Электрофильное замещение в бензольном кольце

Алкилированием называют процессы введения алкильных групп в молекулы органических и некоторых неорганических веществ. Эти реакции имеют очень большое практическое зна­чение для синтеза алкилированных в ядро ароматических соеди­нений, изопарафинов, многих меркаптанов и сульфидов, аминов, веществ с простой эфирной связью, элемент- и металлорганических соединений, продуктов переработки α-оксидов и ацети­лена. Процессы алкилирования часто являются промежуточ­ными стадиями в производстве мономеров, моющих ве­ществ и т. д

ХАРАКТЕРИСТИКА ПРОЦЕССОВ АЛКИЛИРОВАНИЯ

Классификация реакций алкилирования. Наиболее рациональ­ная классификация процессов алкилирования основана на типе вновь образующейся связи.

Алкили ров а ние по атому углерода (С-алкилиро вание) состоит в замещении на алкильную группу атома водо­рода, находящегося при атоме углерода. К этому замещению способны парафины, но наиболее характерно алкилирование для ароматических соединений (реакция Фриделя - Крафтса):

Алкилирование по атомам кислорода и серы (О- и S -алкилирование) представляет собой реакцию, в резуль­тате которой алкильная группа связывается с атомом кислорода или серы:

Алкилирование по атому азота (N -алкилирование) состоит в замещении атомов водорода в аммиаке или в аминах на алкильные группы. Это - важнейший из методов синтеза аминов:

Как и в случае реакций гидролиза и гидратации, N-алкилиро­вание нередко классифицируют как аммонолиз (или аминолиз) органических соединений.

Алкилирование по атомам других элементов (Si -, Pb -, А1-алкилирование) представляет собой важнейший путь получения элемент- и металлорганических соединений, когда алкильная группа непосредственно связывается с гетеро-атомом:

Другая классификация реакций алкилирования основана на различиях в строении алкильной группы, вводимой в органиче­ское или неорганическое соединение.

Алкилиная группа может быть насы­щенной алифатической (например, этильной и изопропильной) или циклической. В последнем случае реакцию иногда назы­вают циклоалкилированием :

При введении фенильной или вообще арильной группы об­разуется непосредственная связь с углеродным атомом арома­тического ядра -арилирование :

Введение винильной группы (винилирование) за­нимает особое место и осуществляется главным образом при помощи ацетилена:

Важнейшей из реакций введения замещенных алкильных групп является процесс β-оксиал кил и ров ания (в частном случае оксизтилирование ), охватывающий широкий круг реакций оксидов олефинов:

Алкилирующие агенты и катализаторы.

Все алкилирующие агенты по типу связи, разрывающейся в них при алкилирова-нии, целесообразно разделить на следующие группы:

    ненасыщенные соединения (олефины и ацетилен), у которых происходит разрыв π-электронной связи между атомами углерода;

    хлорпроизводные с достаточно подвижным атомом хлора, способным замещаться под влиянием различных агентов;

    спирты, простые и сложные эфиры, в частности оксиды олефинов, у которых при алкилировании разрывается углерод- кислородная связь.

Олефины (этилен, пропилен, бутены и высшие – триммеры пропилена) имеют пер­востепенное значение в качестве алкилирующих агентов. Ввиду дешевизны ими стараются пользоваться во всех случаях, где это возможно. Главное применение они нашли для С-алкилирования парафинов и ароматических соединений. Они непри­менимы для N-алкилирования и не всегда эффективны при S- и О-алкилировании и синтезе металлорганических соединений.

Алкилирование олефинами в большинстве случаев протекает по ионному механизму через промежуточное образование карбокатионов и катализируется протонными и апротонными кислотами:

Реакционная способность олефинов при реакциях такого типа определяется их склонностью к образованию карбокатионов:

Это означает, что удлинение и разветвление цепи углеродных в олефине значительно повышает его способность к алкилированию

Хлорпроизводные являются алкилирующими агентами наи­более широкого диапазона действия. Они пригодны для С-, О-, S- и N-алкилирования и для синтеза большинства элементо- и металлорганических соединений. Применение хлопроизводных paционально для тех процессов, в которых их невозможно заменить олефинами или когда хлорпроизводные дешевле и до­ступнее олефинов.

Алкилирующее действие хлорпроизводных проявляется в трех различных типах взаимодействий: в электрофильных реак­циях, при нуклеофильном замещении и в свободно-радикальных процессах. Механизм электрофильного замещения характерен главным образом для алкилирования по атому углерода, но, в отличие от олефинов, реакции катализируются только апротонными кислотами (хлориды алюминия, железа). В предель­ном случаё процёсс идет с промежуточным образованием карбокатиона

в связи с чем реакционная способность алкилхлоридов зависит от поляризации связи С-С1 или от стабильности карбокатионов и повышается при удлинении и разветвлении алкильной группы: СНз-СН 2 С1 < (СН 3) 2 СНС1 < (СН 3) 3 СС1

Спирты и простые эфиры способны к реакциям С-, О-, N- и S-алкилирования. К простым эфирам можно отнести и оксиды олефинов, являющиеся внутренними зфирами гликолей, причем из всех простых эфиров только оксиды олефинов практически используют в качестве алкилирующих агентов. Спирты при­меняют для О- и N-алкилирования в тех случаях, когда они дешевле и доступнее хлорпроизводных. Для разрыва их алкил-кислородной связи требуются катализаторы кислотного типа:

АЛКИЛИРОВАНИЕ ПО АТОМУ УГЛЕРОДА

К процессам этого типа принадлежат очень важные в практи­ческом отношении реакции алкилирования ароматических со­единений в ядро и реакции алкилирования парафинов. В более общем плане их можно разделить на процессы алкилирования по ароматическому и насыщенному атому углерода

Механизм реакции. В качестве алкилирующих агентов в про­мышленности применяют главным образдй хлорпроизвадныеи ^оле^ины. Использование спиртов менее эффективно, Потому что при алкилировании спиртами хлорид алюминия разлагается, а протонные кислоты разбавляются образующейся водой. В обоих случаях происходит дезактивирование катализатора, что обусловливает его большой расход.

При реакции с хлорпроизводными или олефинами А1С1 3 рас­ходуется только в каталитических количествах. В первом случае он активирует атом хлора, образуя сильно поляризованный комплекс или карбокатион, что с олефинами происходит только в присутствии сокатализатора - НС1:

В действительности при катализе комплексом хлорида алюми­ния с углеводородом необходимый для этого протон уже имеется в виде а-комплекса. Он передается молекуле олефина, и образовавшийся карбокатион атакует ароматическое соеди­нение, причем вся реакция происходит в слое каталитического комплекса, который непрерывно обменивается своими лиган-дами с углеводородным слоем. Получившийся тем или иным путем карбокатион, (или сильно поляризованный комплекс) атакует затем ароматическое ядро, причем реакция протекает через промежуточные я-комплекс и карбокатион с последующей быстрой стадией отщепления протона:

Строение алкильной группы в полученном продукте опреде­ляется правилом о промежуточном образовании наиболее ста­бильного карбокатиона (трет- > втор- > пере-). Поэтому в слу­чае низших олефинов только из этилена образуется первичный алкилбензол (этилбензол), из пропилена - вторичный (изопропилбензол), а из изобутена - третбутилбензол:

Однако при алкилировании высшими олефинами и хлорпро­изводными наблюдается изомеризация алкильных групп, кото­рая происходит перед алкилированием, поскольку алкилбензолы к ней уже не способны. Эта изомеризация протекает в направ­лении промежуточного образования наиболее стабильного карбокатиона, но без нарушения углеродного скелета алкильной группы, а лишь с перемещением реакционного центра. Вслед­ствие этого из хлорпроизводных и олефинов с прямой цепью атомов углерода получается смесь втор-алкилбензолов

а из соединений с разветвленной цепью - преимущественно трет- алкилбензолы.

Влияние строения ароматического соединения при реакциях алкилирования в общем такое же, как при других процессах электрофильного замещения в ароматическое ядро, но имеет свои особенности. Реакция алкилирования отличается сравни­тельно малой чувствительностью к электронодонорным замести­телям в ядре. Так, активирующее влияние алкильных групп и конденсированных ядер при катализе реакции А1С1 3 изменяется следующим образом (для бензола величина принята за 1):

Электроноакцепторные заместители сильно дезактивируют ароматическое ядро. Хлорбензол алкилируется примерно в 10 раз медленнее бензола, а карбонильные, карбокси-, циано- и нитрогруппы приводят к полному дезактивированию аромати­ческого ядра, вследствие чего соответствующие производные вообще не способны к алкилированию. Этим реакция алкилиро­вания значительно отличается от других процессов замещения в ароматическое ядро, например от хлорирования и сульфи­рования.

Правила ориентации при алкилировании в общем подобны другим реакциям электрофильного замещения в ароматическое ядро, но строение продукта может существенно изменяться в зависимости от катализаторов и условий реакции. Так, электронодонорные заместители и атомы галогена направляют даль­нейшее замещение преимущественно в пара- и орто -положения, однако в более жестких условиях и особенно при катализе хло­ридом алюминия происходит изомеризация гомологов бензола с внутримолекулярной миграцией алкильных групп и образованием равновесных смесей, в которых преобладают термодинамически более стабильные изомеры.

Последовательное алкилирование. При алкилировании аро­матических соединений в присутствии любых катализаторов происходит последовательное замещение атомов водорода с об­разованием смеси продуктов разной степени алкилирования. Например, метилирование и этилирование бензола идет вплоть до получения гексаалкилбензолов

пропилирование - до получения тетраизопропилбензола и т. д. Каждая из реакций при умеренной температуре является практически необратимой. Так, константы равновесия при син­тезе этилбензола из этилена и бензола при 0, 200 и 500 °С равны соответственно 6-10 11 , 2,2-10 4 и 1,9. Однако при катализе А1С1з и достаточно жестких условиях катализа алюмосилика­тами и цеолитами происходит обратимая реакция переалкилирования (диспропорционирование) с межмолекулярной миграцией алкильных групп:

С теми же катализаторами протекает и рассмотренная выше обратимая изомеризация с внутримолекулярной миграцией ал­кильных групп, в результате которой среди диалкилбензолов преобладает мета-изомер, среди триалкилбензолов 1,3,5-изомер и т. д.:

Способность алкильных групп к миграции изменяется в такой последовательности (СН 3) 3 С > (СН 3) 2 СН > СН 3 -СН 2 > СН 3 , причем с активным комплексом хлорида алюминия эти реакции довольно быстро идут уже при комнатной температуре, в то время как для метилбензолов требуется длительное нагре­вание.

Таким образом, при катализе протонными кислотами, а в более мягких условиях - с другими катализаторами состав про­дуктов алкилирования определяется кинетическими факторами, а с А1С1 3 и в более жестких условиях катализа алюмосилика­тами и цеолитами в пределе может установиться равновесный со­став изомеров и продуктов последовательного алкилирования. Это имеет большое значение при выборе оптимального мольного соотношения реагентов при алкилировании, определяемого эко­номическими затратами на образование полиалкилбензолов и возвращение избыточного бензола.

Побочные реакции. Кроме рассмотренного ранее образования

полиалкилбензолов при алкилировании не­желательны смолооб­разование, деструкция алкильных групп и по­лимеризация олефинов.

Смолообразование состоит в получении конденсированных ароматических соединений с высокой температурой кипения. Из подобных продуктов при алкилировании бензола обнаружены диарилалканы, триарилинданы, диарилолефины и др. При ал­килировании нафталина получается больше смолы, и в ней найдены динафтил и другие вещества с конденсированными циклами. Смолообразование становится особенно существенным при повышении температуры.

Эти же условия ведут к нежелательной деструкции алкиль­ных групп и побочному образованию алкилбензолов с более короткой алкильной группой. Так, при реакции с пропиленом побочно получается этилбензол, с этиленом - толуол и т. д. Особенно заметна такая деструкция при алкилировании алкил-галогенидами и олефинами с достаточно длинной углеродной цепью. Деструкция, вероятно, происходит на стадии расщепле­ния карбокатиона, образовавшегося из алкилирующего агента

Наконец, образование полимеров происходит в результате последовательного взаимодействия карбокатиона с олефином:

Полимеры имеют небольшую молекулярную массу, и их обра­зование подавляется наличием избытка ароматического углево­дорода при снижении концентрации олефина в жидкой фазе.

Кинетика процесса. Сама реакция алкилирования сактив­ным комплексом хлорида алюминия идет очень быстро, сильно ускоряется при механическом перемешивании или интенсивном барботировании газообразных олефинов через реакционную массу и протекает в диффузионной или близкой к ней области. Ее скорость повышается при росте давления, но мало зависит от температуры, имея низкую энергию активации. При этом сохраняется обычная зависимость в реакционной способности олефинов - более сильная, чем различие в их растворимости. Видимо, лимитирующей является стадия диффузии олефина че­рез пограничную пленку каталитического комплекса хлорида алюминия, в которой протекают все реакций. В отличие от этого, переалкилирование идет значительно медленнее и суще­ственно ускоряется при повышении температуры, так как имеет энергию активации ~6ЗкДж/моль.

Обе реакции замедляются при постепенном дезактивирова­нии катализатора, но особенно сильно падает скорость переал­килирования. В результате в реакционной смеси будет накап­ливаться значительное количество полиалкилбензолов, не успе­вающих вступить в обратимую реакцию переалкилирования.

Во избежание этого приходится ограничивать подачу реагентов, и, следовательно, возможность интенсификации процесса лими­тируется самой медленной реакцией переалкилирования.

На дезактивирование катализатора кроме примесей реаген­тов влияет накопление некоторых побочных продуктов алкилирования, способных прочно связывать А1С1 3 или образовывать стабильные σ-комплексы, с трудом отдающие свой протон моле­куле олефина. Такими веществами при низкой температуре, когда переалкилирование идет медленно, являются полиалкилбензолы, а при высокой температуре - полициклические аро­матические соединения и смолы. В результате оказывается, что оптимальные производительность и расход катализатора при получении этил- и изопропилбензола достигаются при некото­рой средней температуре («100°С), когда переалкилирование протекает уже достаточно быстро, но полициклических веществ, дезактивирующих катализатор, получается еще мало.

При синтезе соединений с более длинной алкильной группой выбор температуры лимитируется побочной реакцией деструк­ции, а при получении алкилнафталинов процессами конденсации и осмоления. В этих случаях ее оптимум равен 30-50 °С, при­чем при алкилировании нафталина селективность можно допол­нительно повысить применением растворителя. Это объясняется тем, что в системе реакций

Смолообразование имеет второй порядок по нафталину или ял-килнафталину, а основная реакция - первый. В результате се­лективность по алкилнафталину растет при снижении концен­трации нафталина.

Технологические основы процесса

Так как реакция переалкилирования протекает в алкилаторе одновременно с алкилированием, то для совместного проведения этих процессов в алкилатор вместе с бензолом и этиленом подаётся также фракция ДЭБов (ПАБов), выделенная из реакционной массы при ректификации.

Т. к. данный процесс протекает в диффузионной области, необходимо использование барботера для увеличения поверхности раздела фаз;

Реакция протекает с выделением тепла, следовательно необходимо отводить тепло, что достигается испарением бензола;

Для более глубокого превращения этилена необходимо использовать повышенное давление;

Реакция алкилирования является последовательной реакцией, поэтому для увеличения селективности необходимо поддерживать соотношение бензол: этилен = 3: 1 моль;

Хлорид алюминия является слабым катализатором, поэтому следует готовить каталитический комплекс заранее.

Получение этилбензола осуществляется методом алкилирования бензола этиленом. Процесс алкилирования бензола этиленом - каталитический, проходит при температуре в пределах 125-138 0 С и давлении 0,13-0,25 МПа (1,3-2,5 кгс/см 2), с тепловым эффектом 108 кДж/моль.

Большую роль в производстве этилбензола играет дозировка сырья. Бензол подается в количестве, соответствующем установленному молярному соотношению бензола к этилену 2,8-3,6: 1. При нарушении соотношения бензола к этилену уменьшается концентрация этилбензола в реакционной массе.

Высокие требования предъявляются к осушке сырья, поскольку влага приводит к дезактивации катализатора и, следовательно, к его расходу. Содержание влаги в бензоле, поступающем на алкилирование, рекомендуется поддерживать на уровне 0,002% (масс.). Для этого исходный и возвратный бензол подвергают осушке методом азеотропной ректификации.

Образующаяся в процессе алкилирования реакционная масса (алкилат) в среднем содержит:

– 45-60% масс непрореагировавшего бензола;

– 26-40% масс этилбензола;

– 4-12% масс ПАБов (фракция ДЭБ).

Коррозия в производстве этилбензола обусловлена характером применяемого для алкилирования катализатора хлористого алюминия и инициатора процесса - хлористого этила.

Продукты алкилирования, в связи с присутствием в них хлористого водорода, обладают ярко выраженными коррозионными свойствами, которые усиливаются при температуре более 70 0 С

2.4 Описание технологической схемы производства

Процесс алкилирования бензола этиленом проводится в алкилаторе поз. Р-1 при температуре 125 – 138 0 С и давлении 0,13 - 0,25 МПа (1,3 - 2,5 кгс/см 2). При повышении давления в алкилаторе поз. Р-1 более 0,3 МПа (3 кгс/см 2) прекращается подача бензола и этилена в алкилатор.

В алкилатор поз. Р-1 поступают:

Осушенная бензольная шихта;

Катализаторный комплекс;

Фракция ДЭБов (ПАБов);

Этилен;

Рециркулируемый катализаторный комплекс из отстойника поз. О-1 ;

Возвратный бензол после конденсатора поз. Т-1 или поз. Т-2;

Реакция алкилирования идет с выделением тепла 108 кДж/моль, избыточное количество тепла снимается циркулируемым катализаторным комплексом и испаряющимся бензолом, который из верхней части алкилатора поз. Р-1 в смеси с абгазами направляется в конденсатор поз. Т-1 (поз.Т-2) охлаждаемый оборотной водой. Бензольный конденсат из конденсатора поз. Т-1 (поз. Т-2) самотеком поступает в алкилатор поз. Р-1.

Из алкилатора поз. Р-1 реакционная масса поступает через холодильник поз. Т-3, где охлаждается оборотной водой до температуры 40 - 60 0 С, в отстойник поз. О-1 для отстоя циркулирующего катализаторного комплекса.

Отстоявшийся циркулируемый катализаторный комплекс снизу отстойника поз. О-1 откачивается в алкилатор поз. Р-1. Соотношение рециркулирующего катализаторного комплекса к реакционной массе в пределах (0,7 - 1,3) : 1 по массе.

Для поддержания активности рециркулируемого катализаторного комплекса предусмотрена:

Подача хлористого этила в алкилатор поз. Р-1 и в линию рециркулируемого каткомплекса.

В случае снижения активности рециркулируемого катализаторного комплекса ниже предусмотрен вывод его из отстойника поз. О-1 на разложение.

Из отстойника поз. О-1 реакционная масса самотексом поступает в сборник поз. Е-1.

Алкилат из емкости поз. Е-1 узла алкилирования поступает в смеситель поз. С-1 на смешение с кислой водой, циркулирующей в системе разложения каткомплекса в аппаратах: поз. О-2 поз. Н-2 поз. С-1 поз. О-2. Соотношение циркулирующей кислой воды, подаваемой в смеситель поз. С-1, и алкилата составляет 2:1. В систему разложения через смеситель поз. С-1 подаётся также отработанный каткомплекс (в равных пропорциях со свежим) после отстойника поз. О-1.

Отстой алкилата от воды происходит в отстойнике поз. О-2. Избыточное количество воды из отстойника поз О-2 по уровню раздела фаз самотеком сливается в сборник узла отпарки углеводородов. Нижний водный слой из отстойника поз. О-2 рециркулирует в смеситель поз. С-1.

Алкилат из отстойника поз. О-2 поступает в промывную колонну поз. Кн-1 на вторичную промывку водой, подаваемой из промывной колонны поз. Кн-2.

Из промывной колонны поз. Кн-1 алкилат поступает в емкость поз. Е-3, откачивается на нейтрализацию в смеситель поз. С-2. Нижний водный слой из промывной колонны поз. Кн-3 сливается в емкость поз. Е-2 подается в смеситель поз. С-1.

Нейтрализация алкилата производится химическим реактантом, содержащим NаОН, циркулирующим в системе нейтрализации по схеме:

поз. О-3 поз. Н-5 поз. С-2 поз. О-3.

В отстойнике поз. О-3 происходит отстой алкилата от раствора реактанта. Соотношение циркулирующего раствора щелочи и алкилата равно 1,2:1.

Для поддержания постоянной концентрации раствора реактанта в отстойнике поз. О-3 периодически по результатам анализа подается 15-20% (масс.) раствор реактанта в линию циркулирующего 2-10% (масс.) раствора реактанта.

Нейтрализованный алкилат из отстойника поз. О-3 поступает в промывную колонну поз. Кн-2 на отмывку от щелочи. Отмывка алкилата от щелочи производится паровым конденсатом.

Нижний слой – химзагрязненная вода – из колонны поз. Кн-2 поступает в сборник поз. Е-4, откуда откачивается на промывку алкилата в колонну поз. Кн-1.

Алкилат из промывной колонны поз. Кн-2 самотеком поступает в отстойник поз. О-4.

Нижний слой – химзагрязнная вода – из отстойника поз. О-4 сливается в подземную емкость, а алкилат поступает в емкость поз. Е-5, откуда откачивается на склад.

Таблица № 4.9 Отходы производства этилбензола

Состав, %

Количес-тво, т/г

Периодичность образования

Направление использования

Смола КОРЭ

(кубовые остат-ки ректифика-ции этилбензо-ла)

Диэтилбензол, триэтилбензолы – 5-15,

Высшие ПАБы – 80-95

Постоянно

Используется в качестве сырья для получения технического углерода, или в качестве коте-льного топлива

Потери через неплотности оборудования на наружной установке

Постоянно

Сбрасывается в атмосферу

Химически загрязненные сточные воды

ХПК не более 0,02,

Бензол не более 0,005,

Этилбензол не более 0,005,

Постоянно

После очистки направляются в реку

1-4 – ректификационные колонны; I – углеводородный конденсат; II -этилбензол на рециркуляцию в реакторную подсистему; III - бензол-толуольная фракция; IV - стирол; V - смолы.

В ректификационной колонне 1 отделяется основное количество этилбензола вместе с бензолом и толуолом.

В колонне 3 в качестве дистиллята отгоняется весь этилбензол и часть стирола. Эта фракция возвращается как питание в колонну 1. Таким образом, колонны 1-3 работают как трехколонный комплекс.

Окончательная очистка стирола от смол осуществляется в колонне 4 (часто для этого используют дистилляционный куб). Все колонны, в которых присутствует стирол, работают при глу­боком вакууме, чтобы температура в кубе не превышала 100 °С.

Рассмотрим некоторые особенности приведенной технологической схемы разделения. В такой схеме производства обычно используется вариант, в котором на первом этапе осуществляется второе заданное разделение. А именно, в первой колонне отгоняются вместе с этилбензолом бензол и толуол, а затем от этилбензола отгоняются легколетучие компоненты. С точки зрения затрат энергии этот вариант менее выгоден. Вместе с тем, учитывая реакционную способность стирола (высокая активность и способность к термополимеризации), этот вариант является более предпочтительным. Тем более, если принять во внимание небольшое содержание бензола и толуола в реакционной смеси.

Учитывая высокую реакционную способность стирола, для разделения пары «этилбензол-стирол» обычно используется «двойная ректификация», позволяющая снизить гидравлическое сопротивление ректификационных колонн, а следовательно, и температуру в кубах, которая должна быть не выше 100 °С (при необходимом вакууме). Именно при этой температуре начинается термополимеризация стирола.

В общем случае любая «двойная ректификация» является неприемлемой как в энергетическом отношении, так и по капитальным затратам. Использование такого варианта является вынужденной мерой. В данном случае возможны два варианта «двойной ректификации» (рис. 3.4, а , б ).


Технологическое оформление «двойной» ректификации:

а - вариант I; б - вариант II; 1-2 – ректификационные колонны; I – смесь этилбензола и стирола; II - стирол и полимеры; III - этилбензол.

В первом варианте в первой колонне наряду с полной отгонкой этилбензола (или легколетучего компонента для любой другой системы) отгоняется часть стирола. При этом со­отношение между этилбензолом и стиролом в дистилляте первой колонны выбирается таким, чтобы кубовая жидкость колонны 2 по своему составу примерно соответствовала составу исходной смеси колонны 1.

Во втором варианте в колонне 1 отгоняется чистый этилбензол. В кубе этой колонны остается такое количество этилбензола, которое позволяет при допустимом вакууме поддерживать темпе­ратуру не более 100 о С.

В колонне 2 в качестве дистиллята отгоняется оставшийся этилбензол вместе со стиролом, количество которого определяется соотношением этилбензола и стирола в ис­ходной смеси первой колонны.

В случае разделения этилбензола и стирола предпочтение может быть отдано первому варианту «двойной ректификации», в котором в колонне 2 подвергается нагреванию только часть стирола, тогда как во втором варианте весь стирол подвергается нагреванию в кубах обеих колонн, а это даже при вакууме приводит к его потерям за счет термополимеризации. Правда большая разница в энергозатратах может окупить потери стирола, но для этого требуется более детальное сравнение.

Для решения задачи разделения пары «этилбензол - стирол» может быть предложен вариант с одной колонной, заполненной насадкой с малым гидравлическим сопротивлением. В этом случае, учитывая большие потоки флегмы, будут разные количества потоков жидкости и пара по высоте колонны. Следовательно, для устойчивой работы насадочной колонны необходимы разные диаметры верхней и нижней частей колонны. Такая колонна позволяет разделить эту пару компонентов при температуре в кубе колонны не выше 100 °С.

Насадочная колонна с укрепляющей и исчерпывающей частями разного диаметра:

I – смесь этилбензола и стирола; II – стирол и полимеры; III – этилбензол.

Принципы в технологии получения стирола дегидрированием этилбензола .

· Технология производства стирола дегидрированием этилбензола относится к одностадийным химическим процессам.

· В качестве исходного сырья используется доступный этилбензол, получаемый алкилированием бензола олефинами.



· Применяемые в промышленности технологические решения с введением пара между двумя-тремя слоями катализатора, использование встроенных в реактор теплообменных устройств, а также

· эффективная каталитическая система позволяют при достаточно высокой селективности около 90% добиться конверсии этилбензола за один проход на уровне 60-75%.

· Рециркуляционный поток бензола, связывающий разделительную и реакторную подсистемы технологии, обеспечивают полную конверсию исходного сырья.

Снижение энергозатрат на процесс дегидрирования может достигаться не только за счет эффективного теплообмена между входящими и выходящими потоками, но и за счет использования вместо водяного пара (энергоноситель и разбавитель) инертного газа . В этом случае тепло должно подводиться между слоями катализатора с помощью встроенных теплообменников. Замена пара на инертный газ (азот, СО 2) позволяет избежать многократного испарения и конденсации воды, обладающей высокой скрытой теплотой испарения. В этом случае также снижаются и затраты на очистку водного конденсата, загрязненного ароматическими соединениями, и в целом уменьшится потребление воды производством.

Важной составной частью технологии выступает подсистема разделения . В данном случае, как отмечено ранее, существенным фактором, влияющим на суммарные показатели технологии, являются режимы ректификационного разделения. Они должны обеспечивать условия, при которых отсутствует термополимеризация стирола . Энергетически наиболее целесообразно применять вместо двойной ректификации одну насадочную колонну с низким гидравлическим сопротивлением, либо схему из комплексов гетероазеотропной ректификации.

Наконец, гетерогенно-каталитический характер процесса позволяет достаточно просто создавать аппараты и технологические линии большой единичной мощности.

Характеристика кубовых остатков ректификации стирола и пути их переработки .

Нефтехимические процессы являются наиболее сложными из химических производств, так как получение многих мономеров связано с образованием большого количества вторичных и побочных продуктов, отходов. Экономическая эффективность производства во многом зависит от способов утилизации отходов.

Для этого в настоящее время применяют в основном два метода - топливный и химический . Преимущество второго метода бесспорно, так как при этом рационально решается вопрос сырьевых ресурсов, поскольку многие отходы производства содержат ряд ценных мономеров и органических соединений. Сжигание, напротив, вызывает загрязнение атмосферы, коррозию аппаратуры, теряются в огромных количествах вторичные материальные ресурсы.

При выделении и очистке стирола в процессе ректификации накапливаются кубовые остатки, утилизация которых чрезвычайно важна. В состав их входит большое количество различных органических соединений, в том числе и мономерный стирол, полное извлечение которого на ректификационных колоннах не достигается.

В зависимости от условий фракционирования печного масла содержание стирола в кубовом остатке ректификации может изменяться от 10 до 50 %, а полистирола - 15-70 %.

Внедрение в последние годы высокоэффективных ингибиторов термической полимеризации стирола в процессе его получения позволило значительно снизить количество остаточного стирола и полистирола в КОРС. Это привело к тому, что синтез пленкообразующего стал мало перспективным и основным способом утилизации КОРС, стало использование его в качестве добавки к котельному топливу. Вопросом утилизации КОРС занимаются не один десяток лет, но до сих пор он остается актуальным.

Кубовые остатки ректификации стирола по составу можно условно представить тремя группами веществ

Мономеры,

Полимеры и

Продукты органического синтеза.

В результате исследований было идентифицировано около 95 % веществ, входящих в состав КОРС.

В зависимости от способов получения стирола, режима работы реактора, срока службы катализатора, режима работы колонн ректификации, применяемой ингибирующей системы и времени пребывания в отгонных аппаратах, состав КОРС меняется довольно в широких пределах.

К основным компонентам, входящим в состав КОРС, образующихся при производстве стирола дегидрированием этилбензола, относятся: стирол, метилстиролы, этилбензол, полистирол, дивинилбензол, нафталин, дифенил, неидентифицированные «легкие» вещества, высококипящий «тяжелый» остаток и др.

Исходя из компонентов состава КОРС можно предложить следующие пути его переработки:

1) разделение КОРС на фракции с их дальнейшим полным или частичным использованием.

2) выделение полимерной части из КОРС связано, в основном, с целью использования полимера стирола в качестве основы для получения пленкообразующих композиций.

Выделение полимера предлагалось двумя методами: отгонкой легколетучих компонентов и экстракцией. Необходимо отметить, что молекулярная масса полистирола в кубовых остатках изменяется в довольно широких пределах от 1000 до 110000, поэтому попытки выделения и использования полистирола представляют значительные трудности.

3) прямая утилизация КОРС с получением ценного продукта для дальнейшего его применения.

Прямая утилизация КОРС - на этом пути рассматриваются два направления:

Использование КОРС в качестве пластификатора и

Для получения пленкообразующих материалов.

Ряд работ направлен на использование КОРС в дорожном строительстве, как компонента асфальтобитумных покрытий, улучшающего адгезию к гравию и сцепление с грунтом. Однако, данное использование КОРС бесперспективно. Это в первую очередь связано с его токсичностью. Мономерный стирол присутствует в КОРС в значительно больших количествах, чем допустимо санитарными нормами. Поэтому большинство исследований имели целью утилизировать КОРС таким образом, чтобы уменьшить содержание мономерного стирола в полученном продукте с помощью полимеризации.

4) нейтрализация КОРС , как правило, сжигание в виде раствора - жидкое топливо.

Процесс нейтрализации КОРС определяется его токсичностью - в основном содержащимся в нем остаточным стиролом, а также присутствием очень токсичного и опасного для здоровья человека продукта канцерогена - 3,4-бенз(а)пирена (до 3000 мг/кг). Классический способ нейтрализации - сжигание КОРС в специальных печах затруднен тем, что содержание полимера в нем меняется. В результате образуется при сжигании большое количество сажи, содержащей до 120000 мкг/кг 3,4-бенз(а)пирена. При сжигании КОРС, содержащего в качестве ингибитора серу, образуется большое количество диоксида серы, также требующего улавливания или нейтрализации.

5) Более технологичным является сжигание КОРС в растворе толуола или другого растворителя, например, полиалкилбензольных смол. Этот способ используется большинством заводов, производителей стирола.

На ОАО «Ангарскнефтеоргсинтез» например, КОРС применялся как топливо при сжигании химически загрязненных вод в термических печах в смеси с каменноугольным топочным мазутом, на ОАО «Нижнекамскнефтехим» осуществлен запуск и освоение мощности установки утилизации жидких отходов.

Использование: нефтехимия. Сущность: проводят алкилирование бензола этиленом путем подачи осушенной бензольной шихты, каталитического комплекса на основе хлорида алюминия, этилена, рециркулирующего каталитического комплекса и возвратного бензола в реактор алкилирования, отделение полученной реакционной массы от каталитического комплекса, нейтрализацию реакционной массы щелочью и отмывку водой от щелочи с последующим разделением реакционной массы ректификацией. При этом перед подачей в реактор алкилирования осуществляют смешение осушенной бензольной шихты, каталитического комплекса, этилена, рециркулирующего каталитического комплекса и возвратного бензола в турбулентном режиме и подают их в реактор алкилирования также в условиях турбулентности. Технический результат: повышение конверсии процесса получения этилбензола.

Изобретение относится к области нефтехимии, конкретно к процессу получения этилбензола алкилированием бензола этиленом в присутствии каталитического комплекса на основе хлорида алюминия.

Известен способ получения этилбензола, включающий алкилирование бензола этиленом в присутствии хлористого алюминия, отделение целевого продукта ректификацией от непрореагировавшего бензола и углеводородных примесей, азеотропную осушку смеси исходного бензола с непрореагировавшим бензолом и углеводородными примесями с выделением осушенного бензола, рециркулируемого на алкилирование, и фракции, содержащей воду, углеводородные примеси и бензол, которую подвергают конденсации с получением углеводородного и водного слоев (А.С. СССР №825466, МПК С 07 С 2/58, 15/02, опубл. 30.04.81).

Недостатком описанного способа является повышенный расход хлорида алюминия и бензола.

Известен способ получения этилбензола алкилированием бензола этиленом в присутствии каталитического комплекса на основе хлорида алюминия (Т.В.Башкатов, Я.Л.Жигалин. "Технология синтетических каучуков", М., "Химия", 1980, стр.108-112). Каталитический комплекс, полученный из хлорида алюминия, этилхлорида, диэтилбензола и бензола, непрерывно подают в нижнюю часть реактора алкилирования, куда непрерывно поступает осушенный свежий и возвратный бензол, а также этилен, диэтилбензол, насыщенный бензолом, и рециркулирующий каталитический комплекс. Жидкие продукты алкилирования бензола из верхней части реактора поступают в отстойник, где разделяются на два слоя. Нижний слой - каталитический комплекс - возвращается в реактор, верхний слой - алкилат - поступает на смешение с водой для разрушения остатков каталитического комплекса, на нейтрализацию водным раствором щелочи и отмывку от щелочи. Далее алкилат подвергается трехступенчатой ректификации с выделением в первой колонне непрореагировавшего бензола и возвращением его в реактор алкилирования, с выделением во второй колонне целевого продукта - этилбензола и в третьей колонне - диэтилбензола, возвращаемого в реактор на деалкилирование, и полиалкилбензолов, направляемых на склад.

Недостатком такого способа получения этилбензола является недостаточно высокая конверсия процесса - 90-95% по бензолу и около 93% по этилену.

Известен способ получения этилбензола, включающий алкилирование бензола этиленом в присутствии каталитического комплекса на основе хлорида алюминия и ректификацию реакционной массы (П.А.Кирпичников, В.В.Береснев, Л.М.Попова. "Альбом технологических схем основных производств промышленности синтетического каучука". Л., "Химия", 1986, стр.94-97). В нижнюю часть реактора алкилирования посредством коллектора подается осушенная бензольная шихта, свежий и рециркулирующий каталитический комплекс, фракция полиалкилбензолов и этилхлорид, этилен подается непосредственно в нижнюю часть реактора. Из алкилатора реакционная масса направляется в отстойник для отделения от циркулирующего каталитического комплекса и далее на водную промывку, нейтрализацию раствором щелочи и водную отмывку от щелочи. Отмытая реакционная масса подается на разделение ректификацией с выделением в первой колонне непрореагировавшего бензола, этилбензола-ректификата - во второй колонне и фракции полиалкилбензолов в третьей ректификационной колонне.

Недостатком способа является плохое смешение компонентов, подаваемых в реактор алкилирования, и, как следствие, невысокая конверсия процесса.

Задачей изобретения является повышение конверсии процесса получения этилбензола.

Поставленная задача решается разработкой способа получения этилбензола, включающем алкилирование бензола этиленом путем подачи осушенной бензольной шихты, каталитического комплекса на основе хлорида алюминия, этилена, рециркулирующего каталитического комплекса и возвратного бензола в реактор алкилирования, отделение полученной реакционной массы от каталитического комплекса, нейтрализацию реакционной массы щелочью и отмывку водой от щелочи с последующим разделением реакционной массы ректификацией, при этом перед подачей в реактор алкилирования осуществляют смешение осушенной бензольной шихты, каталитического комплекса, этилена, рециркулирующего каталитического комплекса и возвратного бензола в турбулентном режиме и подают их в реактор алкилирования также в условиях турбулентности.

Отличием предлагаемого способа от известных является то, что перед подачей в реактор алкилирования осушенную бензольную шихту, каталитический комплекс, этилен, рециркулирующий каталитический комплекс и возвратный бензол смешивают в условиях турбулентного режима и в реактор алкилирования их также подают в условиях турбулентности.

В качестве устройства, с помощью которого можно добиться турбулентного смешения потоков и придания им турбулентного движения, может быть использован, например, безобъемный смеситель, оснащенный конфузор-диффузорными секциями, или загруженные в трубу кольца Рашига, или любые другие известные средства, изготовленные из химически стойких материалов или с защитным химически стойким покрытием.

По предлагаемому способу этилбензол получают следующим образом.

Процесс алкилирования бензола этиленом проводится в реакторе алкилирования колонного типа при температуре 125-140°С и давлении верха 0,12-0,25 МПа. В нижнюю часть реактора алкилирования посредством турбулизирующего устройства непрерывно поступают осушенная бензольная шихта, каталитический комплекс на основе хлорида алюминия, этилен, рециркулирующий каталитический комплекс и возвратный бензол. Все компоненты перемешиваются в турбулентном режиме и поступают в реактор в условиях турбулентного движения потока. Из реактора алкилирования реакционная масса подается в отстойник для отстоя циркулирующего каталитического комплекса. Отстоявшийся рециркулируемый каталитический комплекс выводится снизу отстойника и возвращается в реактор алкилирования. Для поддержания активности каталитического комплекса в линию рециркулируемого каталитического комплекса подается хлористый этил. Далее реакционная масса поступает в смеситель, где смешивается с кислой водой в соотношении вода:реакционная масса не менее 1:1. Отстой реакционной массы от воды происходит в отстойнике, откуда верхний слой - реакционная масса - поступает в промывную колонну на промывку водой и далее на нейтрализацию 2-10%-ным раствором щелочи. Нейтрализованная реакционная масса поступает в колонну на отмывку водой от щелочи. Отмывка реакционной массы от щелочи может производиться водой или паровым конденсатом. Отмытая реакционная масса подается на разделение в первую ректификационную колонну, где дистиллятом выделяется непрореагировавший бензол, который подается на осушку. Кубовый продукт первой колонны поступает во вторую ректификационную колонну. Дистиллятом колонны выделяют целевой продукт - этилбензол, а кубовый продукт подается в третью ректификационную колонну, где в качестве дистиллята выделяют фракции диэтилбензола и полиалкилбензолов.

Осуществление способа иллюстрируют следующие примеры.

В нижнюю часть реактора алкилирования через безобъемный смеситель, снабженный диффузор-конфузорными секциями, непрерывно подают осушенную бензольную шихту, каталитический комплекс на основе хлорида алюминия, этилен, рециркулирующий каталитический комплекс и возвратный бензол. Все компоненты перемешиваются в турбулентном режиме и поступают в реактор в условиях турбулентного движения потока. Процесс алкилирования бензола этиленом проводится в реакторе алкилирования колонного типа при температуре 130°С и давлении верха 0,20 МПа. Из реактора алкилирования реакционная масса поступает в отстойник для отстоя циркулирующего каталитического комплекса. Отстоявшийся рециркулируемый каталитический комплекс выводится снизу отстойника и возвращается в реактор алкилирования. Далее реакционная масса поступает в смеситель, где смешивается с кислой водой в соотношении вода:реакционная масса не менее 1:1. Отстой реакционной массы от воды происходит в отстойнике, откуда верхний слой - реакционная масса - поступает в промывную колонну на промывку водой и далее на нейтрализацию 2-10%-ным раствором щелочи. Объемное соотношение раствора щелочи к реакционной массе выдерживают равным 1:1. Нейтрализованная реакционная масса поступает в колонну на отмывку водой от щелочи. Отмытая реакционная масса подается на разделение в первую ректификационную колонну, где дистиллятом выделяется непрореагировавший бензол, который подается на осушку. Кубовый продукт первой колонны поступает во вторую ректификационную колонну. Дистиллятом колонны выделяют целевой продукт - этилбензол, содержащий 99,8% мас. этилбензола, а кубовый продукт подается в третью ректификационную колонну, где в качестве дистиллята выделяют фракции диэтилбензола и полиалкилбензолов. Конверсия процесса по бензолу составляет 97%, по этилену - 95%.

Этилбензол получают так же, как описано в примере 1, но смешение осушенной бензольной шихты, каталитического комплекса, этилена, рециркулирующего каталитического комплекса и возвратного бензола перед подачей в ректор алкилирования осуществляют в трубе, заполненной кольцами Рашига.

Конверсия процесса по бензолу составляет 98%, по этилену - 95,5%.

Как видно из приведенных примеров, предварительное смешение осушенной бензольной шихты, каталитического комплекса, этилена, рециркулирующего каталитического комплекса и возвратного бензола в условиях турбулентного режима перед подачей в ректор алкилирования и подача всех компонентов на алкилирование в условиях турбулентности позволяют достичь высоких показателей конверсии при получении этилбензола.

Способ получения этилбензола, включающий алкилирование бензола этиленом путем подачи осушенной бензольной шихты, каталитического комплекса на основе хлорида алюминия, этилена, рециркулирующего каталитического комплекса и возвратного бензола в реактор алкилирования, отделение полученной реакционной массы от каталитического комплекса, нейтрализацию реакционной массы щелочью и отмывку водой от щелочи с последующим разделением реакционной массы ректификацией, отличающийся тем, что перед подачей в реактор алкилирования осуществляют смешение осушенной бензольной шихты, каталитического комплекса, этилена, рециркулирующего каталитического комплекса и возвратного бензола в турбулентном режиме и подают их в реактор алкилирования также в условиях турбулентности.

Министерство общего образования РФ

КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ

УНИВЕРСИТЕТ

НИЖНЕКАМСКИЙ ХИМИКО-ТЕХНОЛОГИЧЕСКИЙ

ИНСТИТУТ

Кафедра химической технологии

Группа

Курсовой проект

Тема: Получение этилбензола методом алкилирования бензола этиленом

Студентка:

Руководитель (_________)

Студент ка (_________)

г. Нижнекамск

ВВЕДЕНИЕ

Темой данного курсового проекта является получение этилбензола методом алкилирования бензола этиленом.

Наиболее распространенным процессом нефтехимического синтеза является каталитическое алкилирование бензола олефинами, что определяется высоким спросом на алкилароматические углеводороды – сырьё в производстве синтетических каучуков, пластических масс, синтетических волокон и др.

Алкилированием называют процессы введения алкильных групп в мо- лекулы органических и некоторых неорганических веществ. Эти реакции имеют большое практическое значение для синтеза алкилароматических соединений, изо-алканов, аминов, меркаптанов и сульфидов и др.

Реакция алкилирования бензола алкилхлоридами в присутствии безводного хлорида алюминия впервые была осуществлена в 1877 г. Ш. Фриделем и Дж. Крафтсом. В 1878 г. ученик Фриделя Бальсон получил этилбензол алкилированием бензола этиленом в присутствии ALCL3.

Со времени открытия реакции алкилирования было разработано много различных методов замещения водородных атомов бензола и других ароматических углеводородов на алкильные радикалы. Для этого применяли различные агенты алкилирования и катализаторы 48,49.

Скорость алкилирования ароматических углеводородов в несколько сот раз выше, чем парафинов, поэтому алкильная группа практически всегда направляется не в боковую цепь, а в ядро.

Для алкилирования ароматических углеводородов олефинами применяются многочисленные катализаторы, имеющие характер сильных кислот, в частности серная кислота (85-95%-ная), фосфорная и пирофосфорная кислоты, безводный фтористый водород, синтетические и природные

алюмосиликаты, иониты, гетерополикислоты. Кислоты в жидком виде проявляют каталитическую активность в реакциях алкилирования при невысоких температурах (5-100°С); кислоты на твердых носителях, например фосфорная кислота на кизельгуре, действуют при 200-300°С; алюмосиликаты активны при 300-400 и 500°С и давлении 20-40 кгс/см² (1,96-3,92 МН/м²).

Актуальность данной темы является, что в дальнейшем из этилбензола получают стирол, методом дегидрирования этилбензола.

1. ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

2.1 Теоретические основы принятого метода производства.

Алкилирование бензола этиленом. Промышленные процессы алкилирования бензола этиленом различаются в зависимости от применяемого катализатора. Ряд катализаторов опробован в опытно-промышленном масштабе.

В 1943 г.фирмой «Copers» осуществлено алкилирование бензола этиленом на алюмосиликатном катализаторе в жидкой фазе при 310°С и 63 кгс/см² (6,17 МН/м²) при мольном отношении этилен: бензол 1:4.

Широкое распространение приобрёл процесс алкилирования бензола этиленом на хлористом алюминии при атмосферном или несколько повышенном давлении и температуре 80-100°С.

Конкурирует с этим методом алкилирование на твердом фосфорнокислотном катализаторе, однако на этом катализаторе может быть получен только изопропилбензол. Алкилирование же бензола этиленом практически на нём не проводится.

Большую группу катализаторов алкилирования составляют апротонные кислоты (кислоты Льюиса) – галогениды некоторых металлов. Они обычно проявляют каталитическую активность в присутствии промоторов, с которыми образуют продукты, имеющие характер сильных протонных кислот. Из катализаторов этого типа могут применяться хлористый алюминий, бромистый алюминий, трёххлористое железо, хлористый цинк, трёххлористый и четырёххлористый титан. Промышленное применение имеет только хлористый алюминий.

О механизме реакций алкилирования бензола и его гомологов олефинами придерживаются следующих общих представлений.

Алкилирование в присутствии хлористого алюминия трактуется по механиз-


му кислотного катализа. В этом случае в системе должен присутство-

вать промотор, роль которого играет хлористый водород. Последний может

образоваться в присутствии воды:

CH3 CH=CH2 + H – CL ∙ ALCL3 ↔ CH3 – CH – CH3 ∙ CL ∙ ALCL3

Дальнейшее присоединение к ароматическому ядру проходит по меха низму, аналогичному рассмотренному выше:

HCL(CH3)2 ∙CL∙ALCL3 +CH3 –CH–CH3 ∙CL∙ALCL3 →HCH(CH3)2 + CH(CH3)2 + CL ∙ ALCL3 + HCL + ALCL3

В присутствии хлористого алюминия легко протекает деалкилирование, что указывает на обратимость реакции алкилирования. Реакции деалкилирования пользуются для превращения полиалкилбензолов в моноалкил-

Термодинамика реакции алкилирования. На основе физико-химических

констант углеводородов и их термодинамических функций – энтальпии ΔН и

энтропии ΔS можно найти константы равновесия и рассчитать равновесные

выходы алкилпроизводных при алкилировании бензола олефинами в зависи-

мости от температуры и давления.

Равновесный выход этилбензола возрастает с увеличением мольного

избытка бензола и с повышением давления при данной температуре.

С6 H6 + C2 H4 ↔ C6 H5 C2 H5

При алкилировании бензола этиленом при температуре ниже 250-300°С

достигается практически полное превращение бензола в этилбензол. При 450

-500°С для увеличения глубины превращения требуется повышение давления до 10-20 кгс/см² (0,98-1,96 МН/м²).

Реакция алкилирования бензола этиленом является последовательной обратимой реакцией первого порядка. С углублением процесса наряду с моноалкилбензолом образуются также полиалкилбензолы

C6 H6 + Cn H2n ↔ C6 H5 Cn H2n+1

C6 H5 Cn H2n+1 + Cn H2n ↔ C6 H4 (Cn H2n+1)2 которые являются нежелательными побочными продуктами. Поэтому состав реакционной смеси алкилатов чаще определяется кинетическими факторами, чем термодинамическим равновесием.

Так, деалкилирование термодинамически возможно с большой глубиной при 50-100°С. И действительно, в присутствии хлористого алюминия оно проходит хорошо, так как с этим катализатором процесс алкилирования является обратимым. Однако при тех же температурах в присутствии кислот деалкилирование вовсе не происходит. М.А. Далиным экспериментально изучен состав продуктов алкилирования бензола этиленом в присутствии хлористого алюминия.

Состав реакционной смеси определяется соотношением бензола и этилена и не зависит от того, каким образом получен алкилат: прямым алкилированием или деалкилированием полиалкилбензола. Однако этот вывод справедлив только при применении в качестве катализатора хлористого алюминия.

Процесс алкилирования проводится в алкилаторе – реакционной колонне, эмалированной или футерованной графитовой плиткой для защиты от коррозии. Три секции колонны имеют рубашки для охлаждения, однако основное количество тепла отводится испарением некоторой части бензола. Алкилирование ведется в присутствии жидкого катализаторного комплекса, состоящего из хлористого алюминия (10-12%), бензола (50-60%) и полиалкилбензолов (25-30%). Для образования хлористого водорода, который является промотором реакции, в каталитический комплекс добавляют 2% воды от

массы хлористого алюминия, а также дихлорэтан или хлористый этил, при расщеплении которых образуется хлористый водород.

Для выделения этилбензола из алкилата отгоняют при атмосферном давлении бензол (одновременно с бензолом удаляются следы воды). От кубовой жидкости при пониженном давлении (200 мм рт.ст., 0,026 МН/м²) отгоняется широкая фракция – смесь этилбензола и полиалкилбензолов. В следующей колонне при остаточном давлении 50 мм рт.ст. (0,0065 МН/м²) полиалкилбензолы отделяются от смол. Широкую фракцию разгоняют в вакуумной колонне при остаточном давлении 420-450 мм рт.ст. (0,054-0,058 МН/м²). Товарный этилбензол перегоняется в пределах 135,5-136,2°С.

Для получения этилбензола используется этан – этиленовая фракция пиролиза, содержащая 60-70% этилена.

Бензол для алкилирования должен содержать не более 0,003-0,006% воды, в то время как товарный бензол содержит 0,06-0,08% воды. Обезвоживание бензола проводится методом азеотропной дистилляции. Содержание серы в бензоле не должно превышать 0,1%. Повышенное содержание серы вызывает увеличение расхода хлористого алюминия и ухудшает качество готовой продукции.


1.2. Характеристика сырья и получаемого продукта.

Наименование сырья, материалов,

реагентов,

катализаторов.

полуфабрикатов,

изготовляемой

продукции.

Номер государст-

венного или

отраслевого

стандарта,

технических

стандарта

предприятия.

Показатели качества, обязательные для проверки.

Норма (по

ОСТу, стан-

дарту предпри-

Назна-чение,

область применения.

1.ЭТИЛБЕНЗОЛ

бесцветная прозрачная жидкость. Основные показатели свойств этилбензола:

Молекулярная масса=106,17

Плотность, г/см³ = 0,86705 Температура,°С Кипения= 176,1

Плавления=-25,4 Вспышки= 20

Самовоспламенения= 431.

Теплота, кДж/моль

Плавления=9,95

Испарения=33,85 Теплоёмкость, Дж/моль ∙ К=106,4

Теплота сгорания, ккал/моль=1089,4

Растворимость в воде, г/100мл=0,014

В промышленности используют в основном как сырье для синтеза стирола, как добавка к моторному топливу, в качестве разбавителя и растворителя. С6 H5 C2 H5

Большую часть этилбензола получают алкилированием бензола этиленом и значительно меньшее его количество выделяют сверхчеткой ректификацией из продуктов риформинга прямогонного бензина. Основные показатели свойств этилбензола: Этилбензол раздражает кожу, оказывает

судорожное действие. ПДК в атмосферном воздухе составляет 0,02 мг/м³, в водоёмах хозяйственно-

бытового пользования – 0,01 мг/л. КПВ 0,9-3,9% по объёму. Объём мирового

производства около 17 млн. т в год (1987). Объём производства в России 0,8

млн. т в год (1990).

H2 C=CH2. Бесцветный газ со слабым запахом. Этилен растворяется в воде 0,256 см³/см³ (при 0 °С), растворяется в спиртах и эфирах.

Этилен обладает свойствами фитогормонов – замедляет рост, ускоряет старение клеток, созревание и опадение плодов. Он взрывоопасен, КПВ 3-34% (по объёму), ПДК в атмосферном воздухе 3 мг/м³, в воздухе рабочей зоны 100 мг/м³. Мировое производство 50 млн. т в год (1988).

В больших количествах (20%) содержится в газах нефтепереработки; входит в состав коксового газа. Один из основных продуктов нефтехимической промышленности: применяется для синтеза винилхлорида, этиленоксида, этилового спирта, полиэтилена и др. Этилен получается при переработке нефти и природного газа. Выде-

ленная этиленовая фракция содержит 90-95% этилена с примесью пропилена, метана, этана. Применяется как сырьё в производстве полиэтилена, окиси этилена, этилового спирта, этаноламина, поливинилхлорида, в хирургии – для наркоза.


C6 H6. Бесцветная жидкость со своеобразным нерезким запа

хом. С воздухом образует взрывоопасные смеси, хорошо смешивается с эфирами, бензином и другими органическими растворителями. Растворимость в воде 1,79 г/л (при 25 °С). Токсичен, опасен для окружающей среды, огнеопасен. Бензол – ароматический углеводород.

Основные показатели свойств бензола:

Молекулярная масса=78,12

Плотность, г/см³=0,879

Температура, °С:

Кипения=80,1

Плавления=5,4

Вспышки=-11

Самовоспламенения=562

Теплота, кДж/моль:

Плавления=9,95

Испарения=33,85

Теплоёмкость, Дж/моль ∙ К=81,6

Бензол смешивается во всех отношениях с неполярными растворителями: углеводородами, скипидаром, эфирами, растворяет жиры, каучук, смолы (гудрон). Даёт с водой азеотропную смесь с температурой кипения 69,25 °С, образует двойные и тройные азеотропные смеси со многими соединениями.

Встречается в составе некоторых

нефтей, моторных топлив, бензинов. Широко применяется в промышленности, является исходным сырьём для производства лекарств, различных пластмасс, синтетической резины, красителей. Бензол входит в состав сырой нефти, но в промышленных масштабах по большей части синтезируется из других её компонентов. Применяется также для получения этилбензола, фенола, нитробензола, хлорбензола, как растворитель.

В зависимости от технологии производства получают различные марки бензола. Бензол нефтяной получают в процессе каталитического риформинга бензиновых фракций, каталитического гидродеалкилирования толуола и ксилола, а также при пиролизе нефтяного сырья.


2.3. Описание технологической схемы.

В Приложении А представлена технологическая схема производства этилбензола. Процесс алкилирования бензола этиленом проводится в алкилаторе поз. Р-1 в среде этилхлорида при температуре 125-135C и давлении 0,26-0,4 МПа. В алкилатор подаются: осушенная бензольная шихта, каталитический комплекс, фракция полиалкилбензолов, этилен, рециркулирующий каталитический комплекс, возвратный бензол.

Реакция алкилирования идет с выделением теплоты, избыточное количество которой снимается рециркулирующим каталитическим комплексом и испаряющимся бен­золом. Бензол из верхней части алкилатора в смеси с абгазом на­правляется в конденсатор поз. Т-1, охла­ждаемый водой. Несконденсировавшиеся газы из конденсатора поз. Т-1 направляются в конденсатор поз. Т-2, охлаждаемый охлажденной водой t=0°C. Отдувки после конденсатора поз. Т-2 по­ступают на дальнейшее улавлива­ние паров бензола. Бензольный конденсат из конденсаторов поз. Т-1 и Т-2 самотеком сливается в низ алки­латора поз. Р-1. Из алкилатора поз. Р-1 реак­ционная масса через теплообмен­ник поз. Т-3, где охлаждается водой до 40-60 °С, направляется в отстой­ник поз. Е-1 для отделения от циркули­рующего каталитического комп­лекса. Отстоявшийся каталитиче­ский комплекс с низа отстойника поз. Е-1 забирается насосом поз. Н-1 и возвра­щается в алкилатор поз. Р-1. Для под­держания активности катализато­ра в линию рециркулирующего комплекса подается этилхлорид. В случае снижения активности катализатора предусмотрен вывод, отработанного каталитического комплекса на разложение. Реак­ционная масса из отстойника поз. Е-1 собирается в емкость поз. Е-2, откуда за счет давления в системе алкилирования поступает в смеситель поз. Е-3 на смешение с Кислой водой, циркулирующей в системе разложения:

отстойник поз. Е-4-насос, поз. Н-2-смеситель, поз. Е-3. Соотношение циркулирую­щей воды, подаваемой в смеситель, и реакционной массы состав­ляет l/2: 1. Вода в систему разложения подается из сборника поз. Е-5 насосом поз. Н-3. Реакционная масса отстаивается от воды в отстойнике поз. Е-4; нижний водный слой насосом поз. Н-2 направляется в смеситель; а верхний слой - реакционная масса - самотеком стекает в промыв­ную колонну поз. К-1 на вторичную промывку водой, подаваемой насосом поз. Н-4 из промывной колонны поз. К-2. Из промывной колонны поз. К-1 реакцион­ная масса самотеком поступает в сборник поз. Е-6, откуда насосом поз. Н-5 откачивается на нейтрализацию в смеситель поз. Е-7.

Нижний водный слой из промывной колонны поз. К-1 самотеком сли­вается в емкость поз. Е-5 и насосом поз. Н-3 подается в смеситель поз. Е-3. Нейтрали­зация реакционной массы в смесителе поз. Е-7 проводится 2-10%-ным раствором едкого натра. Соотношение реакционной массы и цирку­лирующего раствора едкого натра 1:1.Отделение реакционной массы от раствора щелочи происходит в отстойнике поз. Е-8, откуда ре­акционная масса самотеком поступает в колонну поз. К-2 на отмывку от щелочи водным конденсатом. Нижний слой - химически загряз­ненная вода - из колонны сливается в емкость поз. Е-9 и насосом поз. Н-4 откачивается на промывку реакционной массы в колонну поз. К-1. Реакционная масса из верхней части колонны самотеком поступает в от­стойник поз. Е-10, затем собирается в промежуточную емкость поз. Е-11 и отка­чивается насосом поз. Н-7 на склад.

Технологическая схема алкилирования бензола этиленом на хлористом алюминии, пригодная также и для алкилирования бензола пропиленом.

Процесс алкилирования проводится в алкилаторе – реакционной колонне эмалированной или футерованной графитовой плиткой для защиты от коррозии. Три секции колонны имеют рубашки для охлаждения, однако основное количество тепла отводится испарением некоторой части бензола. Алкилирование ведется в присутствии жидкого катализаторного комплекса, состоящего из хлористого алюминия (10 – 12 %), бензола (50 – 60 %) и

полиалкилбензолов (25 – 30 %). Для образования хлористого водорода, который является промотором реакции, в каталитический комплекс добавляют 2 % воды от массы хлористого алюминия, а также дихлорэтан или хлористый этил, при расщеплении которых образуется хлористый водород.


1.5. Описание устройств и принцип действия основного аппарата.

Алкилирование производится в реакторе колонного типа без механического перемешивания при давлении, близком к атмосферному (Приложение Б). Реактор состоит из четырёх царг, эмалированных или футерованных керамическими либо графитовыми плитками. Для лучшего контактирования внутри реактора имеется насадка. Высота реактора 12 м, диаметр 1,4 м. Каждая царга снабжена рубашкой для отвода тепла при нормальном режиме работы реактора (она же используется для разогрева при пуске реактора). Реактор доверху заполнен смесью бензола и катализатора. В нижнюю часть реактора непрерывно подают осушенный бензол, каталитический комплекс и газообразный этилен. Жидкие продукты реакции алкилирования непрерывно отбирают на высоте примерно 8 м от основания реактора, а сверху реактора отводится паро-газовая смесь, состоящая из непрореагировавших газов и паров бензола. Температура в нижней части реактора равна 100°С, в верхней – составляет 90 - 95°С. Катализаторный комплекс приготовляют в аппарате, откуда суспензия катализатора непрерывно подаётся в реактор алкилирования.

Алкилатор для получения этилбензола в жидкой фазе представляет со­бой стальную колонку, выложенную внутри кислотоупорной футеровкой поз. 4 или покрытую кислотоупорной эмалью для защиты стенок от корродирующего действия соляной кислоты. Аппарат имеет четыре царги поз.1, соеди­ненные фланцами поз. 2. Три царги снабжены рубашками поз. 3 для охла­ждения водой (для отвода тепла при реакции алкилирования). Реактор во время работы заполнен реакционной жидкостью, вы­сота столба которой составляет 10 м . Над уровнем жидкости иногда располагают два змеевика, в которых циркулирует вода, для дополнительного охлаждения.

Работа алкилатора непрерывна: в нижнюю часть его все время подаются бензол, этилен и каталитический комплекс; смесь реаги­рующих веществ и катализатора поднимается в верхнюю часть аппарата и отсюда перетекает в отстойник. Пары, выходящие из верхней части алкилатора (состоящие в основном из бензола), конденсируются и снова возвращаются в алкилатор в виде жид­кости.

За один проход этилен реагирует почти полностью, а бензол только на 50-55%; следовательно, выход этилбензола за один проход составляет около 50% от теоретического; остальной эти­лен теряется на образование ди- и полиэтилбензола.

Давление в алкилаторе во время работы составляет 0,5 ат (избыточное), температура 95-100°С.

Алкилирование бензола этиленом можно вести и в газовой фазе, над твердым катализатором, но этот метод еще мало при­меняется в промышленности.

Выход этилбензола составляет 90 – 95 % в расчёте на бензол и 93 % в расчёте на этилен. Расход на 1 т этилбензола составляет: этилена 0,297 т,

бензола 0,770 т, хлористого алюминия 12 – 15 кг.


2. ВЫВОДЫ ПО ПРОЕКТУ.

Наиболее дешёвый этилбензол получают выделением его из ксилольной фракции продуктов риформинга или пиролиза, где он содержится в количестве 10-15 %. Но основным способом получения этилбензола остаётся способ каталитического алкилирования бензола.

Несмотря на наличие многотоннажных производств алкилбензолов, существует ряд нерешённых проблем, снижающих эффективность и технико-экономические показатели процессов алкилирования. Можно отметить следующие недостатки:

Отсутствие стабильных, высокоактивных катализаторов алкилирования бензола олефинами; нашедшие же широкое применение катализаторы – хлорид алюминия, серная кислота и др.вызывают коррозию аппаратуры, не регенерируются;

Протекание вторичных реакций, снижающих селективность производства алкилбензолов, что требует дополнительных затрат на очистку получаемых продуктов;

Образование большого количества сточных вод и отходов производств при существующих технологических схемах алкилирования;

Недостаточные единичные мощности производства.

Таким образом, вследствие большой ценности этилбензола, в настоящее время спрос на него очень велик, при этом его себестоимость сравнительно невысока. Сырьевая база для получения этилбензола также широка: бензол и этилен в больших количествах получаются при крекинге и пиролизе нефтяных фракций.


3. СТАНДАРТИЗАЦИЯ

В курсовом проекте были применены следующие ГОСТы:

ГОСТ 2.105 – 95 Общие требования к текстовым документам.

ГОСТ 7.32 – 81 Общие требования и правила оформления курсовых и дипломных работ.

ГОСТ 2.109 – 73 Основные требования чертежа.

ГОСТ 2.104 – 68 Основные надписи на чертежах.

ГОСТ 2.108 – 68 Спецификации.

ГОСТ 2.701 – 84 Схемы, виды, типы, общие требования.

ГОСТ 2.702 – 75 Правила выполнения схем различных видов.

ГОСТ 2.721 – 74 Обозначения условные и графические в схемах.

ГОСТ 21.108 – 78 Условное и графическое изображение на чертежах.

ГОСТ 7.1 – 84 Правила оформления списка литературы.


4. СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ.

1. Травень В.Ф. Органическая химия: в 2 т: учеб.для вузов / В.Ф. Травень. – М.: НКЦ Академкнига, 2005. – 727 с.: ил. – Библиогр.: с. 704 – 708.

2. Эпштейн Д.А. Общая химическая технология: учеб.для ПТУ / Д.А. Эпштейн. – М.: Химия, - 1979. – 312 с.: ил.

3. Литвин О.Б. Основы технологии синтеза каучуков. / О.Б. Литвин. – М.: Химия, 1972. – 528 с.: ил.

4. Ахметов Н.С. Общая и неорганическая химия: учеб.для вузов – 4-е изд., испр. / Н.С. Ахметов. – М.: Высшая школа, изд. центр Академия, 2001. – 743 с.: ил.

5. Юкельсон И.И. Технология основного органического синтеза. / И.И. Юкельсон. – М.: Химия, -1968. – 820 с.: ил.

6. Паушкин Я.М., Адельсон С.В., Вишнякова Т.П. Технология нефтехимического синтеза: часть 1: Углеводородное сырьё и продукты его окисления. / Я.М. Паушкин, С.В. Адельсон, Т.П. Вишнякова. – М.: Химия, -1973. – 448 с.: ил.

7. Лебедев Н.Н. Химия и технология основного органического и нефтехимического синтеза: учеб.для вузов – 4-е изд., перераб. и доп. / Н.Н. Лебедев. – М.: Химия, -1988. – 592 с.: ил.

8. Платэ Н.А., Сливинский Е.В. Основы химии и технологии мономеров: учеб.пособие. / Н.А.Платэ, Е.В.Сливинский. – М.: МАИК Наука / Интерпериодика, -2002. – 696 с.: ил.


Введение…………………………………………………………………………3

2.Технологическая часть……………………………………………………….

2.1. Теоретические основы принятого метода производства………….5

2.2. Характеристика сырья и получаемого продукта…………………..9

2.3. Описание технологической схемы…………………………………12

2.4. Материальный расчёт производства……………………………….15

2.5. Описание устройства и принцип действия основного аппарата….20

3. Выводы по проекту………………………………………………………….22

4. Стандартизация………………………………………………………..........24

5. Список используемой литературы…………………………………………25

6. Спецификация………………………………………………………………26

7. Приложение А………………………………………………………………27

8. Приложение Б………………………………………………………………28