Водород образуется при взаимодействии соляной кислоты. Кислоты. Химические свойства и способы получения. Химические свойства кислот

При взаимодействии соляной и разбавленной серной кислоты с металлами окислителем является ион водорода Н. Поэтому они взаимодействуют с металлами, стоящими в ряду напряжений до водорода. При этом образуется соль и выделяется водород:

Металлы переменной валентности, проявляющие переменную степень окисления, соляной и разбавленной серной кислотами окисляются, как правило, до низших степеней окисления, например:

Свинец практически не взаимодействует с соляной и разбавленной серной кислотами, так как на его поверхности образуется плотная нерастворимая пленка хлорида или сульфата свинца (II).

В концентрированной серной кислоте окислителем являются суль- фаг-ионы, в которых сера находится в степени окисления +6. Окисляя металл, серная кислота восстанавливается до сероводорода, серы и оксида серы (IV).

При взаимодействии концентрированной серной кислоты с активными металлами образуются соль, вода и преимущественно сероводород:

Малоактивные металлы восстанавливают концентрированную серную кислоту преимущественно до БСЬ, например:

а металлы средней активности - преимущественно до серы:

Металлы переменной валентности концентрированной НгБС^ окисляются, как правило, до высшей степени окисления, например:

Благородные металлы с концентрированной серной кислотой не взаимодействуют ни при каких условиях. Некоторые металлы (А1, Бе, Сг, N1, Тц V и др.) не взаимодействуют с концентрированной серной кислотой при обычных условиях (пассивируются), но взаимодействуют при нагревании.

Большое практическое значение имеет пассивация железа: концентрированную серную кислоту можно хранить в ёмкостях из обычной нелегированной стали.

Свинец с концентрированной серной кислотой взаимодействует с образованием растворимой кислой соли (гидросоли), оксида серы (IV) и воды:

В азотной кислоте , независимо от её концентрации, окислителем являются нитрат-ионы N0, содержащие азот в степени окисления +5. Поэтому азотной кислотой водород не выделяется. Азотная кислота окисляет все металлы за исключением самых неактивных (благородных). При этом образуются соль, вода и продукты восстановления азота (+5): 1ЧН 4 МОз, Ы 2 , N20, N0, НЫ0 2 , Ы0 2 . Свободный аммиак не выделяется, так как он взаимодействует с азотной кислотой, образуя нитрат аммония:

При взаимодействии металлов с концентрированной азотной кислотой (30-60 % НЬЮз) продуктом восстановления НЫОз является преимущественно оксид азота (IV), независимо от природы металла, например:

Металлы переменной валентности при взаимодействии с концентрированной азотной кислотой окисляются до высшей степени окисления. При этом те металлы, которые окисляются до степени окисления +4 и выше, образуют кислоты или оксиды. Например:

В концентрированной азотной кислоте пассивируются алюминий, хром, железо, никель, кобальт, титан и некоторые другие металлы. После обработки азотной кислотой эти металлы не взаимодействуют и с другими кислотами.

При взаимодействии металлов с разбавленной азотной кислотой продукт её восстановления зависит от восстановительных свойств металла: чем активнее металл, тем в большей степени восстанавливается азотная кислота.

Активные металлы восстанавливают разбавленную азотную кислоту максимально, т.е. образуются соль, вода и ЫН 4 ЫОз, например:

При взаимодействии с разбавленной азотной кислотой металлов средней активности образуются соль, вода и азот или N2O, например:

При взаимодействии разбавленной азотной кислоты с малоактивными металлами образуются соль, вода и оксид азота (II), например:

Но уравнения реакций в данных примерах условны, так как в действительности получается смесь соединений азота, причем, чем выше активность металла и ниже концентрация кислоты, гем ниже степень окисления азота в том продукте, которого образуется больше других.

Царской водкой называется смесь концентрированных азотной и соляной кислот. Она применяется для окисления и перевода в растворимое состояние золота, платины и других благородных металлов. Соляная кислота в царской водке затрачивается на образование комплексного соединения окисленного металла. Уравнения реакций золота и платины с царской водкой записываются гак:

В некоторых учебных пособиях встречается другое объяснение взаимодействия благородных металлов с царской водкой. Считают, что в этой смеси между HNO3 и НС1 происходит катализируемая благородными металлами реакция, в которой азотная кислота окисляет соляную но уравнению:

Хлорид нитрозила NOCI непрочен и разлагается но уравнению:

Окислителем металла является атомарный (т.е. очень активный) хлор в момент выделения. Поэтому продуктами взаимодействия царской водки с металлами являются соль (хлорид), вода и оксид азота (II):

а комплексные соединения образуются при последующих реакциях как вторичные продукты:

Кислоты – сложные вещества, которые при взаимодействии с водой образуют в качестве катионов только ионы Н + (или Н 3 О +) .

По растворимости в воде кислоты можно поделить на растворимые и нерастворимые . Некоторые кислоты самопроизвольно разлагаются и в водном растворе практически не существуют (неустойчивые) . Подробно про классификацию кислот можно прочитать .

Получение кислот

1. Взаимодействие кислотных оксидов с водой. При этом с водой реагируют при обычных условиях только те оксиды, которым соответствует кислородсодержащая растворимая кислота.

кислотный оксид + вода = кислота

Например , оксид серы (VI) реагирует с водой с образованием серной кислоты :

SO 3 + H 2 O → H 2 SO 4

При этом оксид кремния (IV) с водой не реагирует :

SiO 2 + H 2 O ≠

2. Взаимодействие неметаллов с водородом. Таким образом получают только бескислородные кислоты.

Неметалл + водород = бескислородная кислота

Например , хлор реагирует с водородом :

H 2 0 + Cl 2 0 → 2H + Cl —

3. Электролиз растворов солей. Как правило, для получения кислот электролизу подвергают растворы солей, образованных кислотным остатком кислородсодержащих кислот. Более подробно этот вопрос рассмотрен в статье .

Например , электролиз раствора сульфата меди (II):

2CuSO 4 + 2H 2 O → 2Cu + 2H 2 SO 4 + O 2

4. Кислоты образуются при взаимодействии других кислот с солями. При этом более сильная кислота вытесняет менее сильную .

Например: карбонат кальция CaCO 3 (нерастворимая соль угольной кислоты) может реагировать с более сильной серной кислотой.

CaCO 3 + H 2 SO 4 → CaSO 4 + 2H 2 O + CO 2

5. Кислоты можно получить окислением оксидов, других кислот и неметаллов в водном растворе кислородом или другими окислителями.

Например , концентрированная азотная кислота окисляет фосфор до фосфорной кислоты:

P + 5HNO 3 → H 3 PO 4 + 5NO 2 + H 2 O

Химические свойства кислот

1. В водных растворах кислоты диссоциируют на катионы водорода Н + и анионы кислотных остатков. При этом сильные кислоты диссоциируют почти полностью, а слабые кислоты диссоциируют частично.

Например , соляная кислота диссоциирует почти полностью:

HCl → H + + Cl –

Если говорить точнее, происходит протолиз воды, и в растворе образуются ионы гидроксония:

HCl + H 2 O → H 3 O + + Cl –

Многоосновные кислоты диссоциируют cтупенчато.

Например , сернистая кислота диссоциирует в две ступени:

H 2 SO 3 ↔ H + + HSO 3 –

HSO 3 – ↔ H + + SO 3 2–

2. Кислоты изменяют окраску индикатора. Водный раствор кислот окрашивает лакмус в красный цвет, метилоранж в красный цвет. Фенолфталеин не изменяет окраску в присутствии кислот.

3. Кислоты реагируют с основаниями и основными оксидами .

С нерастворимыми основаниями и соответствующими им оксидами взаимодействуют только растворимые кислоты.

нерастворимое основание + растворимая кислота = соль + вода

основный оксид + растворимая кислота = соль + вода

Например , гидроксид меди (II) взаимодействует с растворимой бромоводородной кислотой:

Cu(OH) 2 + 2HBr → CuBr 2 + 2H 2 O

При этом гидроксид меди (II) не взаимодействует с нерастворимой кремниевой кислотой.

Cu(OH) 2 + H 2 SiO 3 ≠

С сильными основаниями (щелочами) и соответствующими им оксидами реагируют любые кислотами.

Щёлочи взаимодействуют с любыми кислотами — и сильными, и слабыми . При этом образуются средняя соль и вода. Эти реакции называются реакциями нейтрализации . Возможно и образование кислой соли , если кислота многоосновная, при определенном соотношении реагентов, либо в избытке кислоты . В избытке щёлочи образуется средняя соль и вода:

щёлочь (избыток) + кислота = средняя соль + вода

щёлочь + многоосновная кислота (избыток) = кислая соль + вода

Например , гидроксид натрия при взаимодействии с трёхосновной фосфорной кислотой может образовывать 3 типа солей: дигидрофосфаты , фосфаты или гидрофосфаты .

При этом дигидрофосфаты образуются в избытке кислоты, либо при мольном соотношении (соотношении количеств веществ) реагентов 1:1.

NaOH + H 3 PO 4 → NaH 2 PO 4 + H 2 O

При мольном соотношении количества щелочи и кислоты 1:2 образуются гидрофосфаты:

2NaOH + H 3 PO 4 → Na 2 HPO 4 + 2H 2 O

В избытке щелочи, либо при мольном соотношении количества щелочи и кислоты 3:1 образуется фосфат щелочного металла.

3NaOH + H 3 PO 4 → Na 3 PO 4 + 3H 2 O

4. Растворимые кислоты взаимодействуют с амфотерными оксидами и гидроксидами.

Растворимая кислота + амфотерный оксид = соль + вода

Растворимая кислота + амфотерный гидроксид = соль + вода

Например , уксусная кислота взаимодействует с гидроксидом алюминия:

3CH 3 COOH + Al(OH) 3 → (CH 3 COO) 3 Al + 3H 2 O

5. Некоторые кислоты являются сильными восстановителями . Восстановителями являются кислоты, образованные неметаллами в минимальной или промежуточной степени окисления , которые могут повысить свою степень окисления (йодоводород HI, сернистая кислота H 2 SO 3 и др.).

Например , йодоводород можно окислить хлоридом меди (II):

2HI — + 2Cu +2 Cl 2 → 2HCl + 2Cu + Cl + I 2 0

6. Кислоты взаимодействуют с солями.

Кислоты реагируют с растворимыми солями только при условии, что в продуктах реакции присутствует газ, вода, осадок или другой слабый электролит . Такие реакции протекают по механизму ионного обмена .

Кислота 1 + растворимая соль 1 = соль 2 + кислота 2 /оксид + вода

Например , соляная кислота взаимодействует с нитратом серебра в растворе:

Ag + NO 3 — + H + Cl — → Ag + Cl — ↓ + H + NO 3 —

Кислоты реагируют и с нерастворимыми солями. При этом более сильные кислоты вытесняют менее сильные кислоты из солей .

Например , карбонат кальция (соль угольной кислоты), реагирует с соляной кислотой (более сильной, чем угольная):

CaCO 3 + 2HCl → CaCl 2 + H 2 O + CO 2

5. Кислоты взаимодействуют с кислыми и основными солями. При этом более сильные кислоты вытесняют менее сильные из кислых солей . Либо кислые соли реагируют с кислотами с образованием более кислых солей.

кислая соль 1 + кислота 1 = средняя соль 2 + кислота 2 /оксид + вода

Например , гидрокарбонат калия реагирует с соляной кислотой с образованием хлорида калия, углекислого газа и воды:

KHCO 3 + HCl → KCl + CO 2 + H 2 O

Ещё пример : гидрофосфат калия взаимодействует с фосфорной кислотой с образованием дигидрофосфата калия:

H 3 PO 4 + K 2 HPO 4 → 2KH 2 PO 4

При взаимодействии основных солей с кислотами образуются средние соли. Более сильные кислоты также вытесняют менее сильные из солей.

Например , гидроксокарбонат меди (II) растворяется в серной кислоте:

2H 2 SO 4 + (CuOH) 2 CO 3 → 2CuSO 4 + 3H 2 O + CO 2

Основные соли могут взаимодействовать с собственными кислотами. При этом вытеснения кислоты из соли не происходит, а просто образуются более средние соли.

Например , гидроксохлорид алюминия взаимодействет с соляной кислотой:

Al(OH) Cl 2 + HCl → AlCl 3 + H 2 O

6. Кислоты взаимодействуют с металлами.

При этом протекает окислительно-восстановительная реакция. Однако минеральные кислоты и кислоты-окислители взаимодействуют по-разному.

К минеральным кислотам относятся соляная кислота HCl, разбавленная серная кислота H 2 SO 4 , фосфорная кислота H 3 PO 4 , плавиковая кислота HF, бромоводородная HBr и йодоводородная кислоты HI.

Такие кислоты взаимодействуют только с металлами, расположенными в ряду активности до водорода :

При взаимодействии минеральных кислот с металлами образуются соль и водород :

минеральная кислота + металл = соль + H 2

Например , железо взаимодействует с соляной кислотой с образованием хлорида железа (II):

Fe + 2H + Cl → Fe +2 Cl 2 + H 2 0

Сероводородная кислота H 2 S, угольная H 2 CO 3 , сернистая H 2 SO 3 и кремниевая H 2 SiO 3 с металлами не взаимодействуют .

Кислоты-окислители (азотная кислота HNO 3 любой концентрации и серная концентрированная кислота H 2 SO 4(конц)) при взаимодействии с металлами водород не образуют , т.к. окислителем выступает не водород, а азот или сера. Продукты восстановления азотной или серной кислот бывают различными. Определять их лучше по специальным правилам. Эти правила подробно разобраны в статье . Я настоятельно рекомендую выучить их наизусть.

7. Некоторые кислоты разлагаются при нагревании.

Угольная H 2 CO 3 , сернистая H 2 SO 3 и азотистая HNO 2 кислоты разлагаются самопроизвольно, без нагревания:

H 2 CO 3 → H 2 O + CO 2

H 2 SO 3 → H 2 O + SO 2

2HNO 2 → NO + H 2 O + NO 2

Кремниевая H 2 SiO 3 , йодоводородная HI кислоты разлагаются при нагревании:

H 2 SiO 3 → H 2 O + SiO 2

2HI → H 2 + I 2

Азотная кислота HNO 3 разлагается при нагревании или на свету:

4HNO 3 → O 2 + 2H 2 O + 4NO 2

Химические свойства водорода

При обычных условиях молекулярный Водород сравнительно мало активен, непосредственно соединяясь лишь с наиболее активными из неметаллов (с фтором, а на свету и с хлором). Однако при нагревании он вступает в реакции со многими элементами.

Водород вступает в реакции с простыми и сложными веществами:

- Взаимодействие водорода с металлами приводит к образованию сложных веществ - гидридов, в химических формулах которых атом металла всегда стоит на первом месте:


При высокой температуре Водород непосредственно реагирует с некоторыми металлами (щелочными, щелочноземельными и другими), образуя белые кристаллические вещества - гидриды металлов (Li Н, Na Н, КН, СаН 2 и др.):

Н 2 + 2Li = 2LiH

Гидриды металлов легко разлагаются водой с образованием соответствующей щелочи и водорода:

СаH 2 + 2Н 2 О = Са(ОН) 2 + 2Н 2

- При взаимодействии водорода с неметаллами образуются летучие водородные соединения. В химической формуле летучего водородного соединения, атом водорода может стоять как на первом так и на втором месте, в зависимости от местонахождения в ПСХЭ (см. табличку в слайде):

1). С кислородом Водород образует воду:

Видео "Горение водорода"

2Н 2 + О 2 = 2Н 2 О + Q

При обычных температурах реакция протекает крайне медленно, выше 550°С - со взрывом (смесь 2 объемов Н 2 и 1 объема О 2 называется гремучим газом ) .

Видео "Взрыв гремучего газа"

Видео "Приготовление и взрыв гремучей смеси"

2). С галогенами Водород образует галогеноводороды, например:

Н 2 + Cl 2 = 2НСl

При этом с фтором Водород взрывается (даже в темноте и при - 252°С), с хлором и бромом реагирует лишь при освещении или нагревании, а с йодом только при нагревании.

3). С азотом Водород взаимодействует с образованием аммиака:

ЗН 2 + N 2 = 2NН 3

лишь на катализаторе и при повышенных температуpax и давлениях.

4). При нагревании Водород энергично реагирует с серой :

Н 2 + S = H 2 S (сероводород),

значительно труднее с селеном и теллуром.

5). С чистым углеродом Водород может реагировать без катализатора только при высоких температуpax:

2Н 2 + С (аморфный) = СН 4 (метан)


- Водород вступает в реакцию замещения с оксидами металлов , при этом образуются в продуктах вода и восстанавливается металл. Водород - проявляет свойства восстановителя:


Водород используется для восстановления многих металлов , так как отнимает кислород у их оксидов:

Fe 3 O 4 + 4H 2 = 3Fe + 4Н 2 О, и т. д.

Применение водорода

Видео "Применение водорода"

В настоящее время водород получают в огромных количествах. Очень большую часть его используют при синтезе аммиака, гидрогенизации жиров и при гидрировании угля, масел и углеводородов. Кроме того, водород применяют для синтеза соляной кислоты, метилового спирта, синильной кислоты, при сварке и ковке металлов, а также при изготовлении ламп накаливания и драгоценных камней. В продажу водород поступает в баллонах под давлением свыше 150 атм. Они окрашены в тёмно-зелёный цвет и снабжаются красной надписью "Водород".

Водород используется для превращения жидких жиров в твердые (гидрогенизация), производства жидкого топлива гидрогенизацией углей и мазута. В металлургии водород используют как восстановитель оксидов или хлоридов для получения металлов и неметаллов (германия, кремния, галлия, циркония, гафния, молибдена, вольфрама и др.).

Практическое применение водорода многообразно: им обычно заполняют шары-зонды, в химической промышленности он служит сырьём для получения многих весьма важных продуктов (аммиака и др.), в пищевой - для выработки из растительных масел твёрдых жиров и т. д. Высокая температура (до 2600 °С), получающаяся при горении водорода в кислороде, используется для плавления тугоплавких металлов, кварца и т. п. Жидкий водород является одним из наиболее эффективных реактивных топлив. Ежегодное мировое потребление водорода превышает 1 млн. т.

ТРЕНАЖЕРЫ

№2. Водород

ЗАДАНИЯ ДЛЯ ЗАКРЕПЛЕНИЯ

Задание №1
Составьте уравнения реакций взаимодействия водорода со следующими веществами: F 2 , Ca, Al 2 O 3 , оксидом ртути (II), оксидом вольфрама (VI). Назовите продукты реакции, укажите типы реакций.

Задание №2
Осуществите превращения по схеме:
H 2 O -> H 2 -> H 2 S -> SO 2

Задание №3.
Вычислите массу воды, которую можно получить при сжигании 8 г водорода?