Лукин квантовый компьютер. В россии создан самый мощный квантовый компьютер в мире. Что наделал наш лукин? он остановил луч света

Когда речь заходит о выдающихся российских ученых, многие вспоминают героев прошлых лет - Менделеева, Павлова или Ландау, забывая, что и среди наших современников есть множество незаурядных исследователей. Ко Дню российской науки «Чердак» собрал имена тех, кто сделал значимые открытия уже в XXI веке.

Физика

Андрей Гейм. Фото: ИТАР-ТАСС/ Станислав Красильников

В новом тысячелетии Нобелевская премия по физике доставалась русскоязычным ученым трижды, правда лишь в 2010 году - за открытие, совершенное в XXI веке. Выпускники МФТИ Андрей Гейм и Константин Новоселов в лаборатории Манчестерского университета впервые смогли получить стабильный двумерный кристалл углерода - графен. Он представляет собой очень тонкую - толщиной в один атом - углеродную пленку, которая благодаря своей структуре обладает множеством интересных свойств: это и замечательная проводимость, и прозрачность, и гибкость, и очень высокая прочность. Для графена все время находят новые и новые области применения, например в микроэлектронике: из него создают гибкие дисплеи, электроды и солнечные батареи.

Михаил Лукин. Фото: ИТАР-ТАСС/ Денис Вышинский

Еще один выпускник МФТИ, а ныне профессор физики Гарвардского университета Михаил Лукин , сделал, казалось бы, невозможное: он остановил свет. Для этого ученый использовал сверхохлажденные пары рубидия и два лазера: контрольный делал среду проводимой для света, а второй служил источником короткого светового импульса. При отключении контрольного лазера частицы светового импульса переставали выходить из среды, как бы останавливаясь в ней. Этот эксперимент стал настоящим прорывом на пути создания квантовых компьютеров - машин совершенно нового типа, которые могут параллельно выполнять колоссальное количество операций. Ученый продолжил исследования в этой области, и в 2012 году его группа в Гарварде создала самый долгоживущий на тот момент кубит, наименьший элемент для хранения информации в квантовом компьютере. А в 2013-м Лукин впервые получил фотонную материю - подобие вещества, только состоящее не из атомов, а из частиц света, фотонов. Ее также планируют использовать для квантовых вычислений.

Юрий Оганесян (в центре) с Георгием Флеровым и Константином Петржаком. Фото из электронного архива ОИЯИ

Российские ученые в XXI веке значительно расширили таблицу Менделеева. Например, в январе 2016 года в нее добавились элементы с номерами 113, 115, 117 и 118, три из которых были впервые получены в Объединенном институте ядерных исследований (ОИЯИ) в Дубне под руководством академика РАН Юрия Оганесяна . Ему также принадлежит честь открытия ряда других сверхтяжелых элементов и реакций их синтеза: в природе элементы тяжелее урана не существуют - слишком нестабильны, так что они создаются искусственно в ускорителях. Кроме того, Оганесян экспериментально подтвердил, что для сверхтяжелых элементов есть так называемый «остров стабильности». Все эти элементы очень быстро распадаются, но сперва теоретически, а затем и экспериментально было показано, что среди них должны быть такие, время жизни которых значительно превышает время жизни соседей по таблице.

Химия

Артем Оганов. Фото из личного архива

Химик Артем Оганов , руководитель лабораторий в США, Китае и России, а теперь еще и профессор Сколковского института науки и технологий, создал алгоритм, который позволяет с помощью компьютера искать вещества с заранее заданными свойствами, даже невозможные с точки зрения классической химии. Разработанный Огановым метод лег в основу программы USPEX (что читается как русское слово «успех»), которая широко применяется по всему миру («Чердак» подробно ). С ее помощью были открыты новые магниты, и вещества, способные существовать в экстремальных условиях, например под высоким давлением. Предполагается, что такие условия вполне могут быть на других планетах, а значит, там и предсказанные Огановым вещества.

Валерий Фокин. Биофармацевтический кластер «Северный»

Однако необходимо не только смоделировать вещества с заранее заданными свойствами, но и создать их на практике. Для этого в 1997 году в химии была введена новая парадигма, так называемая клик-химия . Слово «клик» имитирует звук защелки, ведь новый термин был введен для реакций, которые должны при любых условиях соединять маленькие составные части в нужную молекулу. Сперва ученые с недоверием отнеслись к существованию чудо-реакции, однако в 2002 году Валерий Фокин , выпускник Нижегородского государственного университета имени Лобачевского, сейчас работающий в Институте Скриппс в Калифорнии, открыл такую «молекулярную защелку»: она состоит из азида и алкина и работает в присутствии меди в воде с аскорбиновой кислотой. С помощью этой нехитрой реакции можно соединять друг с другом совершенно различные соединения: белки, красители, неорганические молекулы. Такой «клик»-синтез веществ с заранее известными свойствами прежде всего необходим при создании новых лекарств.

Биология

Евгений Кунин. Фото из личного архива ученого

Однако для лечения болезни иногда необходимо не просто нейтрализовать вирус или бактерию, но и подправить собственные гены. Нет, это не сюжет для фантастического фильма: ученые уже разработали несколько систем «молекулярных ножниц», способных редактировать геном (подробнее об удивительной технологии в статье «Чердака»). Наиболее перспективной среди них считается система CRISPR/Cas9, в основу которой лег механизм защиты от вирусов, существующий у бактерий и архей. Один из ключевых исследователей этой системы - наш бывший соотечественник Евгений Кунин , уже много лет работающий в Национальном центре биотехнологической информации США. Помимо CRISPR-систем ученый интересуется многими вопросами генетики, эволюционной и вычислительной биологии, так что недаром его индекс Хирша (индекс цитируемости статей ученого, отражающий, насколько востребованы его исследования) перевалил за 130 - это абсолютный рекорд среди всех русскоязычных ученых.

Вячеслав Эпштейн. Фото Северо-западного университета

Впрочем, опасность сегодня предоставляют не только поломки генома, но и самые обычные микробы. Дело в том, что за последние 30 лет не было создано ни одного нового типа антибиотиков, а к старым бактерии постепенно становятся невосприимчивыми. На счастье человечества, в январе 2015 года группа ученых из Северо-восточного университета США объявила о создании абсолютно нового противомикробного средства. Для этого ученые обратились к изучению почвенных бактерий, вырастить которые в условиях лаборатории прежде считалось невозможным. Чтобы обойти эту преграду, сотрудник Северо-восточного университета, выпускник МГУ Вячеслав Эпштейн вместе с коллегой разработал специальный чип для выращивания непокорных бактерий прямо на дне океана – таким хитрым способом ученый обошел проблему повышенной «капризности» бактерий, которые никак не хотели расти в чашке Петри. Эта методика и легла в основу большого исследования, результатом которого стал антибиотик теиксобактин, который может справиться и с туберкулезом, и с золотистым стафилококком.

Математика

Григорий Перельман. Фото: George M. Bergman - Mathematisches Institut Oberwolfach (MFO)

Даже весьма далекие от науки люди наверняка слышали о математике из Санкт-Петербурга Григории Перельмане . В 2002-2003 годах он опубликовал три статьи, доказывающие гипотезу Пуанкаре. Эта гипотеза относится к разделу математики, который называется топологией и объясняет наиболее общие свойства пространства. В 2006 году доказательство было принято математическим сообществом, и гипотеза Пуанкаре, таким образом, стала первой решенной среди так называемых семи задач тысячелетия . К ним относятся классические математические проблемы, доказательства которых не были найдены на протяжении многих лет. За свое доказательство Перельман был удостоен Филдсовской премии, которую часто называют Нобелевкой для математиков, а также премии, установленной Математическим институтом Клэя за решение задач тысячелетия. От всех наград ученый отказался, чем и привлек к себе внимание далекой от математики общественности.

Станислав Смирнов. Фото: ИТАР-ТАСС/ Юрий Белинский

Работающий в Женевском университете Станислав Смирнов в 2010 году тоже стал обладателем Филдсовской премии. Самую престижную в математическом мире награду ему принесло доказательство конформной инвариантности двумерной перколяции и модели Изинга в статистической физике - эта вещь с непроизносимым названием используется теоретиками для описания намагниченности материала и применяется в разработке квантовых компьютеров.

Андрей Окуньков. Фото: «Радио Свобода»

Перельман и Смирнов - представители Ленинградской математической школы, выпускники небезызвестной 239-й школы и математико-механического факультета СПбГУ. Но были среди номинантов математической Нобелевки и москвичи, например много лет проработавший в США профессор Колумбийского университета, выпускник МГУ Андрей Окуньков . Он получил медаль Филдса в 2006 году, одновременно с Перельманом, за достижения, соединяющие теорию вероятностей, теорию представлений и алгебраическую геометрию. На практике работы Окунькова разных лет нашли применение как в статистической физике для описания поверхностей кристаллов, так и в теории струн - области физики, пытающейся объединить принципы квантовой механики и теории относительности.

История

Петр Турчин. Фото: Технологический университет Стивенс

Новую теорию на стыке математики и гуманитарных наук предложил Петр Турчин . Удивительно, что при этом сам Турчин не математик и не историк: он биолог, учившийся в МГУ, ныне работает в университете Коннектикута и занимается исследованием популяций. Процессы популяционной биологии развиваются на протяжении долгого времени, и для их описания и анализа зачастую необходимо построение математических моделей. Но моделирование можно использовать и для лучшего понимания социальных и исторических явлений в человеческом обществе. Именно это и сделал в 2003 году Турчин, назвав новый подход клиодинамикой (от имени музы истории Клио). С помощью этого метода самим Турчиным были установлены «вековые» демографические циклы.

Лингвистика

Андрей Зализняк. Фото: Mitrius/wikimedia

Ежегодно в Новгороде, а также в некоторых других древних русских городах, таких как Москва, Псков, Рязань и даже Вологда, находят все новые и новые берестяные грамоты, возраст которых датируется XI-XV веком. В них можно найти личную и официальную переписку, детские упражнения, рисунки, шутки, а то и вовсе любовные послания - «Чердак» о самых смешных древнерусских надписях. Живой язык грамот помогает исследователям разобраться в новгородском диалекте, а также в жизни простого народа и истории Руси. Самый известный исследователь берестяных грамот - это, безусловно, академик РАН Андрей Зализняк : недаром на его ежегодные лекции, посвященные вновь найденным грамотам и расшифровке старых, набивается полный зал народу.

Климатология

Василий Титов. Фото с сайта noaa.gov

Утром 26 декабря 2004-го, в день трагического цунами в Индонезии, унесшего, по разным оценкам, жизни 200-300 тысяч человек, выпускник НГУ, работающий в Центре по исследованию цунами при Национальной океанической и атмосферной администрации в Сиэтле (США), Василий Титов проснулся знаменитым. И это не просто фигура речи: узнав о сильнейшем землетрясении, произошедшем в Индийском океане, ученый, прежде чем лечь спать, решил запустить на компьютере программу по прогнозированию волны цунами и выложил ее результаты в сеть. Его прогноз оказался очень точным, но, к сожалению, был сделан слишком поздно и потому не смог предотвратить человеческих жертв. Теперь же программа по прогнозированию цунами MOST , разработанная Титовым, используется во многих странах мира.

Астрономия

Константин Батыгин. Фото с сайта caltech.edu

В январе 2016 года мир потрясла еще одна новость: в нашей родной Солнечной системе . Одним из авторов открытия оказался родившийся в России Константин Батыгин из Калифорнийского университета. Исследовав движение шести космических тел, находящихся за орбитой Нептуна - последней из признанных на данный момент планет, ученые с помощью вычислений показали, что на расстоянии, в семь раз превышающем расстояние от Нептуна до Солнца, должна находится еще одна, обращающаяся вокруг Солнца планета. Размер ее, по оценкам ученых, в 10 раз превышает диаметр Земли. Однако для того, чтобы окончательно убедиться в существовании далекого гиганта, все еще необходимо увидеть его с помощью телескопа.

Недавно гарвардской группе физика Михаила Лукина удалось создать - фактически, подобие вещества, которое состоит не из атомов, а из квантов света. Это фундаментальное открытие, - ранее о возможности фотонной материи говорили только теоретически, - имеет непосредственное практическое применение: на основе взаимодействующих фотонов можно создавать вычислительную логику для квантовых компьютеров. Пока это дело отдаленного будущего, но уже сейчас группа Лукина работает над созданием коммуникационных устройств для систем абсолютно защищенной связи.

Михаил Лукин, - профессор Гарвардского университета и по совместительству глава Международного консультативного совета Российского квантового центра . Он - один из самых цитируемых физиков российского происхождения. Его группа занимается не только фундаментальными исследованиями в фотонике, но и ее технологическим применением. Причем не только в области квантовых коммуникаций или квантовых вычислений, но и в применении к медицине: летом этого года группа Лукина создала алмазные , с помощью которых можно селективно и контролируемо убивать раковые клетки. «Лента.ру» поговорила с ученым о том, как новое открытие способно приблизить появление полноценных квантовых компьютеров, легко ли фундаментальная физика превращается в медицинские стартапы и о том, что он делает для Сколково, работая в Бостоне.

«Лента.ру»: В вашей последней статье говорится о создании фотонной материи. Что это такое?

Давайте я попробую объяснить на простом примере. Представьте два лазерных пучка, которые вы перекрещиваете друг с другом. Фотоны этих пучков никак не взаимодействуют, они проходят друг сквозь друга, никак друг на друга не влияя, как две волны на поверхности озера. Это происходит вследствие того, что индивидуальные кванты света, фотоны, - фундаментально не взаимодействующие частицы. Однако если те же лазерные пучки вы скрестите не в вакууме, а в некоей среде, например в стекле, ситуация поменяется. Свет разных пучков станет взаимодействовать: лучи будут друг друга немного отклонять или скорость в одном пучке будет меняться в зависимости от интенсивности другого.

Почему это происходит? Дело в том, что свет сам по себе меняет среду, в которой он распространяется. Обычно очень слабо, но меняет. Изменившаяся среда по-другому проводит электромагнитное излучение - и именно через среду происходит взаимодействие фотонов.

Все это довольно давно известно. Область физики, которая занимается подобными взаимодействиями, существует уже почти полвека и называется нелинейной оптикой. В нее, кстати говоря, большой вклад сделали советские ученые. Однако до сих пор никому не удавалось заставить взаимодействовать не лазерные лучи, а отдельные кванты света.

В принципе, теоретически над этим многие думали ранее. Лет 20-30 назад были теоретические предсказания касательно того, какую среду распространения света нужно сделать, чтобы заставить фотоны внутри нее взаимодействовать. Была предсказана возможность существования таких экзотических объектов, фотонных пар, - по существу, фотонных молекул. В этой статье в Nature , про которую вы говорите, мы описали, как нам, наконец, удалось такие пары получить. Их, собственно, и называют фотонной материей - из-за того, что они сильно напоминают молекулы, но состоят не из атомов, а из фотонов.

Здесь следует добавить, что изучение взаимодействующих фотонов интересно не только само по себе. Оно имеет прямое практическое применение в информационных технологиях, в коммуникациях. Дело вот в чем. С одной стороны, тот факт, что обычно фотоны не взаимодействуют, - это их большое преимущество как носителя информации. Но с другой стороны, если мы хотим как-то перерабатывать информацию, которая передается с помощью света, то необходимо делать какие-то переключатели, какие-то логические элементы. А для этого нужно, чтобы фотоны как-то вступали во взаимодействие друг с другом. Сейчас свет в основном используется только для передачи информации, а для манипуляции с ней его нужно переводить в какой-то электрический сигнал. Это неудобно, медленно и неэффективно. Поэтому, если нам удастся заставить фотоны взаимодействовать друг с другом, мы сможем создать полностью фотонные устройства, обрабатывающие информацию.

Как устроена среда, в которой существует фотонная материя?

В нашей установке она состоит из охлажденных атомов рубидия, образующих достаточно плотный атомный газ. В этой среде свет распространяется очень медленно. То есть по сравнению с вакуумом скорость света падает в любой среде, это понятно, но в данном случае фотоны почти останавливаются - их скорость составляет около ста метров в секунду. Метод такой «остановки света» мы опубликовали еще в 2001 году (Лента.ру об этой работе).

Изображения: Ofer Firstenberg et al., Nature, 2013

Распространяясь в такой среде, фотоны как бы тянут за собой шлейф атомных возбуждений. За счет этого, собственно, свет и замедляется. Но самое интересное заключается в том, что атомы в этой среде начинают настолько сильно друг с другом взаимодействовать, что эти взаимодействия переносятся на фотоны, и они, фотоны, как бы начинают притягиваться друг к другу. В результате, фотоны, во-первых, приобретают эффективную массу и, во-вторых, за счет взаимного притяжения формируют связное состояние, которое напоминает молекулу. Законы, описывающие поведение фотонов в такой среде, очень похожи на законы, описывающие поведение частиц с массой, массивных атомов.

Фотонная молекула, которую нам удалось получить, это только начало, потому что в принципе из них можно создавать и более сложные объекты. Прежде всего нас интересуют сейчас аналоги кристаллических структур, фотонные кристаллы.

Имеется в виду фотонная материя, содержащая не два фотона, а больше?

Не только больше, но и на регулярных интервалах. Чтобы получить такое состояние, фотоны должны отталкиваться, а не притягиваться. В принципе, мы знаем, как этого добиться, и я думаю, что небольшие кристаллы наверняка можно сделать в ближайшем будущем.

Полученные вами пары фотонов, насколько я понимаю, достаточно стабильны. То есть их, как и всякие фотоны, нельзя остановить, они должны двигаться в среде, но они относительно длительное время существуют в паре, не коллапсируют, не превращаются, скажем, в один фотон увеличенной энергии. При этом, как вы сказали, в среде между ними возникает только сила притяжения, без отталкивания. Почему так происходит?

Все дело в том, что это квантовая система. Вспомните атомную модель Бора, у которой в этом году столетний юбилей. Ведь в обычном атоме тоже есть положительно заряженное ядро, есть электрон и между ними нет никаких сил отталкивания, только притяжение. Тем не менее, электрон на ядро не падает, как мы знаем.

Происходит это из-за квантования энергии, которая позволяет электрону как бы двигаться вокруг ядра и при этом не коллапсировать. Точно такая же история происходит с нашими фотонами. В принципе, между ними есть только сила притяжения, но из-за того, что это квантовая система, она не коллапсирует, она находится в стабильном состоянии. Ситуация очень похожа на ту, что имеет место в молекулах с двумя атомами. То есть название «фотонной материи» для этих пар частиц весьма оправданно, - аналогия здесь достаточно глубокая.

В этом же выпуске Nature , где появилась ваша статья, опубликована работа Фукухара, где подобный эффект спаривания был продемонстрирован не на фотонах, а на магнонах - виртуальных магнитных частицах.

Да, это сделала группа Эммануэля Блоха из института Макса Планка. Это действительно очень необычное совпадение, потому что системы, на которых мы работаем, совершенно разные, но эффекты, которые мы наблюдаем, удивительно похожи.

Группа Блоха работала с атомами, фиксированными в оптической ловушке . Это довольно известная система, которая при помощи нескольких лазеров позволяет создать оптическую решетку, в которой атомы сидят в потенциальных ямах, условно говоря, как яйца в коробке. В исходном состоянии все эти атомы имеют один спин, то есть их магнитная поляризация направлена в одну сторону. Воздействуя на эту среду светом, Блох и коллеги добились того, что пара атомов поменяла спин на противоположный, а затем эта инверсия начала волной распространяться вдоль решетки.

При этом тоже возникла пара связанных частиц, только в их случае магнонов, а не фотонов. То, что магноны могут существовать в связанном состоянии, было известно, в принципе, и раньше. Но группе Блоха впервые удалось проследить распространение этих связанных частиц в среде. Волновая функция такого связанного состояния частиц очень похожа на то, что мы увидели для фотонов. Оказывается, это такой достаточно универсальный эффект.

Мы с Эммануэлем недавно встретились на конференции. За завтраком, когда я показал ему свои данные, возникла довольно забавная ситуация: наши данные оказались настолько похожи при совершенно разных физических процессах, что оставалось только сказать «вау».

Да, но пары магнонов, в отличие от фотонной материи, гораздо менее удобны для применения в коммуникациях. Расскажите, пожалуйста, что с фотонной материей можно делать в практическом плане?

Прикладная цель нашей работы - создание фотонной логики. В системах, где отдельные фотоны могут друг с другом взаимодействовать, мы можем создавать, скажем, однофотонные переключатели или однофотонные транзисторы. Одна из конкретных задач заключается в том, чтобы подойти к созданию квантового повторителя - устройства, которое позволяет передать квантовую информацию, не разрушая ее квантовой природы.

Что такое квантовый повторитель? Вы, конечно, знаете о , в которой информация передается с помощью одиночных фотонов, находящихся в суперпозиции двух состояний. Теоретически, передача ключа с помощью одиночных фотонов является абсолютно надежной технологией шифрования, потому что любая попытка злоумышленника вмешаться в систему и перехватить сообщение будет заметна. Этим, собственно, квантовая криптография и интересна. Однако в любых каналах существуют потери, поэтому ныне существующая квантовая связь ограничивается тем расстоянием, на котором большая часть фотонов не теряется - это десятки, максимум - сотни километров.

В принципе, проблема потерь существует и в классической связи, но там она решается с помощью обычных повторителей, которые принимают сигнал, немножко «чистят» его, повторяют в усиленном виде и отправляют дальше по оптической сети. Для квантовой связи необходимы аналоги таких устройств. Но проблема в том, что если вы посылаете информацию, закодированную в одном фотоне, вы не можете его «усилить» (типичным примером является детекция фотона с неизвестной поляризацией - если базис при измерении будет не совпадать с базисом поляризации фотона, информация просто будет потеряна - прим. «Ленты.ру» ).

Квантовый повторитель должен уметь две базовые вещи. Во-первых, он должен уметь сохранить квантовую информацию, которая передается с фотонами. Чтобы добиться этого, мы, собственно, и работали над тем, что называют «остановкой света». В этом, собственно, была практическая мотивация нашей работы - мы пытались остановить импульс, записав его информацию в атомное возбуждение.

Во-вторых, чтобы сделать этот повторитель, необходимо научиться делать логические переключатели для фотонов, фотонную логику. И те эксперименты, которые сейчас были опубликованы, они имеют прямое отношение к созданию такой логики для квантовых повторителей.

А кубитами в этом компьютере выступают фотонные пары?

Нет, кубитами являются отдельные фотоны. И логика будет построена на основе их соединения и разъединения в фотонные молекулы. Поскольку мы можем связать фотоны в пары, мы представляем, как создать переключатель, где, скажем, наличие одного фотона сможет остановить распространение другого. На этом уже можно строить вычислительную логику.

Конечно, здесь очень много работы предстоит. Чтобы создать переключатель, мы должны во много раз улучшить взаимодействие между фотонами. Но основной принцип мы уже показали, и он работает. Теперь можно думать в более практическом ключе. На самом деле, в независимом эксперименте мы уже намного улучшили даже то качество взаимодействия (перформанс), которое было получено в опубликованных экспериментах.

Мы надеемся, что квантовыми повторителями применение фотонной материи не ограничится. В будущем, на их основе можно будет создать полноценные квантовые компьютеры, выполняющие вычисления. Это пока очень дальний горизонт, потому что для этого необходимо создать сотни, может даже тысячи кубитов. А квантовый повторитель - наша текущая, вполне осязаемая, практическая цель.

Вы занимаетесь не только фотонной материей. В августе мы про то, как ваша группа придумала неожиданное применения для алмазов с азотными вакансиями . Обычно их используют в роли кубитов, но вы сделали из них термометры даже не клеток, а их отдельных частей. Откуда появилась такая идея?

Сейчас в роли носителей кубитов используют самые разные системы. Это могут быть, например, охлажденные сверхпроводящие резонаторы, отдельные ионы или охлажденные атомы в оптической ловушке. Или, в случае данной работы, электроны в так называемых NV-центрах. Физически NV-центр - это просто дырка в кристаллической решетке алмаза, существующая рядом с примесью - атомом азота. Примеси эти существуют и в обычных алмазах, но мы можем создавать их и искусственно с помощью облучения, например, атомами азота. Причем эти центры можно делать в очень маленьких частицах, нанокристаллах алмаза.

Электроны NV-центра, если он расположен близко к поверхности, очень чувствительны к внешней среде, к ее температуре и магнитному полю. От этих параметров зависит, грубо говоря, скорость их квантовой эволюции. С одной стороны, для квантовых компьютеров это проблема - состояние системы становится хрупким, его становится трудно в таком кубите сохранить. Но, с другой стороны, такие NV-центры можно использовать как крайне чувствительные сенсоры.

Уникальность их в том, что они могут быть очень маленькими, то есть мы можем измерять поля и температуру в очень маленьких объемах. Естественно, что мы попробовали использовать такие нанокристаллы для приложений, где микроскопический размер - это преимущество. Например, для спектроскопии сложных биомолекул при комнатной температуре или для измерения температуры отдельных частей клетки. В той статье мы изучали возможности применения алмазных NV-центров именно как микроскопических термометров.

Такие нанокристаллы - это не только совершенно новый для биологов инструмент. Это еще и, потенциально, метод контролируемого уничтожения раковых клеток. И в этом смысле пример того, как совершенно фундаментальное исследование, такой «blue sky research», может приводить к разработке реальных приложений. Уже сейчас есть пара стартапов, которые пытаются эту методику коммерциализировать.

Это ваши стартапы?

Один из них создал мой бывший постдок, второй - мой бывший студент. Я в них вовлечен только как внешний советник. То есть я немножко знаю, что там происходит. Очень интересно наблюдать, как исследования превращаются в реальные приложения.

Вы возглавляете научный консультативный совет Российского квантового центра в Сколково , но сами в России не работаете. Хотя многие ваши коллеги как раз уже сюда перебрались. Как так получилось?

Когда, собственно, создавалось Сколково, мне пытались предложить создать большую лабораторию в Москве. Но я вообще не сторонник строительства больших империй, мне кажется, что когда есть огромные группы, в которых работают сотни человек, тогда руководитель реально уже не может наукой заниматься, он должен быть прежде всего менеджером. И на моей памяти это никогда не заканчивалось чем-то хорошим.

Моя позиция была в том, что если в Москве будет активный центр, в котором будут работать хорошие ученые, со своими идеями, своими группами, то я с удовольствием с ними буду взаимодействовать и сотрудничать. Свою лабораторию в Москве я создавать не захотел. Но я сказал, что могу помочь создать РКЦ, и, в частности, пообещал помочь найти хороших людей, которые могли бы создать лаборатории. Ну и посоветовать, как что можно организовать.

То, что было создано менее чем за два года, что я видел этим летом, уже впечатляет. Есть несколько теоретических и экспериментальных групп, которые уже начинают делать серьезные эксперименты. С группой Алексея Акимова у нас летом вышла совместная статья в Science .

Мы разговаривали с ним про эту публикацию . Он сейчас работает в Сколково, но вот эту установку, на которой, собственно, и сделана статья, собирали в Америке.

Это так. Тем не менее, сейчас здесь уже есть научная жизнь, уже появляются довольно интересные работы. Я имею в виду группы Акимова, Калачевского, Львовского, Желтикова и Устинова («Лента.ру» писала про создание в лаборатории последнего).

Я довольно много времени и сил потратил на то, чтобы помочь сделать так, чтобы все это работало правильно. Сейчас главный вопрос, который меня беспокоит - это вопрос о том, какое будущее ждет квантовый центр и вообще подобные проекты. Этот вопрос важный, потому что...

Потому что люди хотят планировать свою жизнь...

Не только. Дело в том, что одним Квантовым центром не решишь всех проблем. Должна быть по крайней мере какая-то группа таких институтов или центров. У них должна быть хоть какая-то долговременная перспектива - только так создается настоящая научная среда.

Лично мне наиболее удивительно в этой истории то, насколько много ведущих мировых ученых согласилось помочь в создании этого центра. И помогли, причем помогли совершенно безвозмездно. Для российской действительности, это, насколько я понимаю, случай уникальный. Может быть, именно поэтому и получилось что-то хорошее сделать.

Михаил Лукин (род. 1971) — один из самых титулованных ученых современности. Американский и российский физик, член Американской академии наук, профессор Гарвардского университета, выпускник МФТИ, один из основателей Российского квантового центра. Михаил Лукин встретился с редакцией журнала «За науку» в Бостоне и поговорил о Гарвардском образовании, Ландавшице, алмазных кубитах, экспериментах, теории и даже о ремонте физтеховских общежитий в студенческие годы. Публикация Ксении Цветковой в журнале "За науку", 2018. №3.

В Гарварде я преподаю один курс в семестр. В основном это спецкурсы для аспирантов, сейчас — электродинамика. Здесь несколько уровней: вводный — на уровне книги Парселла, я же преподаю более продвинутый — что-то среднее между Сивухиным и Ландавшицем. Ландавшица здесь знают, но не особо используют. По моему мнению, это хорошая книга, но немного устаревшая. Например, все современные курсы с самого начала используют формализм векторов бра и кет для описания квантовых состояний. Первый квантовый том Ландавшица об этом не упоминает. Чтобы получить степень бакалавра по физике, нужно пройти всего несколько курсов: механика, электричество, термодинамика и волны. При этом есть много курсов высокого уровня. Tе, кто идет в аспирантуру, берут аспирантские курсы еще в бакалаврские годы. Здесь нет потолка, если есть интерес.

В Гарварде число предметов намного меньше, чем на Физтехе в 1-й год обучения, — там их было, наверное, десять. В Гарварде их четыре в семестр, но при этом они более интенсивные и в них часто включают проекты, выполняемые в лаборатории. Говорят, что Физтех смоделирован по образу MIT, но я в этом не уверен. Калифорнийский технологический институт (Caltech) больше похож на Физтех. Там все берут вначале одни и те же курсы. В 1998 году невозможно было даже мечтать о том, чтобы стать профессором в Гарварде. Здесь есть довольно необычные постдоковские стипендии — полная свобода, делай что хочешь. У тебя нет своей группы, однако ты можешь выбрать, с какой группой работать, а можешь работать сам. Стипендию непросто получить, но если удастся — считай, стал свободным художником. Я получил одну из них.

За три года на позиции постдока мы стали развивать интересные идеи, в частности, придумали эксперимент по остановке света. Этот процесс позволяет когерентно записать информацию о фотонном импульсе в атоме, а потом считать. Мы не только развили теорию, но и сделали эксперимент на ее основе, который получил широкую известность. По окончании трехлетнего срока в 2001 году мне предложили позицию assistant professor. Моя группа раз в несколько лет начинает разрабатывать новое направление. Из-за этого наша лаборатория довольно необычная, потому что мы не работаем в какой-то одной области. Для ученого очень важно время от времени менять направление. Это поддерживает научную молодость, заставляет думать, изучать новые вещи.

30 человек из моих выпускников уже стали профессорами, хотя обычно малая часть аспирантов остается в науке, в основном идут работать в крупные компании. В целом я считаю, что уход ученого в компании тоже делает мир лучше. В 2004 году мы начали использовать алмазные примеси как кубиты. Тогда у меня была толковая работящая аспирантка, которая занималась теорией. Мы стали думать, как построить твердотельные квантовые компьютеры или квантовые сети. В какой-то момент она пришла ко мне и сказала: «Никто не будет читать наши теоретические статьи, нужно сделать эксперимент». Тогда я только начинал, у нас была всего одна маленькая комната-лаборатория, и мой коллега одолжил нам место — уголок в его лаборатории три на три метра. Как потом оказалось, это был исторический, счастливый уголок, потому что в нем было совершено много важных открытий. Мы построили там два маленьких эксперимента. В течение пяти лет было восемь статей в Science и Nature — так началась алмазная кубитная деятельность.

Есть легендарная история. В одном из московских институтов был найден алмазный образец с уникальными свойствами для экспериментов: он был очень чистый. Его разделили на четыре кусочка: два достались нам, два — Штутгарту, где работала другая группа. Долгое время все эксперименты делались именно с этим алмазом. Сейчас, конечно, уже можно вырастить искусственные алмазы, которые по чистоте превосходят russian magic diamond — магический русский алмаз. Квантовый компьютер — это очень интересная, открытая тема, все об этом думают, компании инвестируют. Есть два очень интересных момента, о которых люди забывают. Мы пока не знаем, сможем ли мы построить настоящий большой квантовый компьютер в миллион кубитов. Более того, даже если мы его построим, никто пока точно не знает, для чего же он может пригодиться. Но мы уже начинаем создавать системы достаточно большие, когерентные и программируемые — уже ясно, что они позволят нам уникальным образом изучать динамику сложных систем. Я уверен, в ближайшие годы мы найдем много новых приложений.

Мои родители — ученые. Папа работает на Физтехе, а мама математик. Мой отец оканчивал Физтех, мой брат оканчивал Физтех. При этом мои родители считали, что заниматься в жизни можно чем угодно, но для начала нужно получить хорошее образование. По их определению, хорошее образование — либо физика, либо, в крайнем случае, математика. В детстве я хотел заниматься кино. Ходил в детские киностудии, что-то снимал, даже получал какие-то призы. Долгое время не занимался физикой специально, даже активно боролся с родителями, однако в какой-то момент стал задумываться, что делать дальше. Для кино нужно было поступать во ВГИК, а это казалось практически невозможным. В момент слабости родители уговорили меня попробовать порешать задачки, и мне очень понравилось. В последний год школы я занимался у Виктора Ивановича Чивилева с кафедры общей физики. Это просто изумительный человек и преподаватель. Сейчас он тренирует олимпиадные команды, преподает очень интересно, интуитивно. Виктор Иванович привил мне интерес к решению задач, за последний год школы я подготовился к вступительным экзаменам. Когда я поступал на Физтех, решать задачи мне нравилось, но все равно не был уверен: наука — это мое или нет? На ФОПФ шли все, кто хотел заниматься наукой. Поэтому я решил, что кванты — это что-то более прикладное. Так я и оказался на ФФКЭ.

Была интересная история: мы после второго курса летом ремонтировали наше общежитие, «двойку». Говорят, что его построили немецкие военнопленные в конце 40-х — начале 50-х, с тех пор оно потихонечку рушилось, его пытались привести в порядок, но ничего хорошего не выходило. Мы вместе с Фёдором Золотарёвым и Сашей Парбуковым взялись и отремонтировали его по государственным расценкам, но при этом используя поступающих ребят. После этого один из «зачинщиков» ремонта Фёдор Золотарёв создал свою строительную компанию. Говорят, у него много известных физтехов потом работало. Что пожелать физтехам? Развиваться, найти себя, не следовать за толпой. Всегда искать новые решения и не бояться сложных задач. Тогда все будет хорошо.


Российские и американские ученые из Гарвардского университета, работающие в группе Михаила Лукина, создали квантовый компьютер из 51 кубита, самый мощный на сегодня в мире. Об этом сооснователь Российского квантового центра (РКЦ) профессор Лукин сообщил в своем докладе на Международной конференции по квантовым технологиям (ICQT-2017), которая прошла в июле в Москве под эгидой РКЦ.


В отличие от классических цифровых компьютеров, у которых память построена на принципе двоичного кода (0 или 1, «да» или «нет»), квантовые компьютеры строят на основе кубитов - квантовых битов. Они тоже допускают два состояния (0 и 1), но благодаря своим квантовым свойствам кубит дополнительно допускает еще и состояния суперпозиции, то есть, условно говоря, еще массу промежуточных состояний между двумя основными состояниями, описываемых комплексными (мнимыми) числами. Понятно, что при таких условиях мощность и быстродействие квантового компьютера на несколько порядков выше.

Саму идею использовать квантовые вычисления для решения чисто математических задач предложил еще в 1980 году Юрий Манин из Института имени Стеклова, а год спустя принцип построения квантового компьютера сформулировал Ричард Фейнман. Но прошли десятилетия, прежде чем появились технологии, способные реализовать их идеи на практике.

Главной проблемой было создать устойчиво работающие кубиты. Группа Лукина использовала для них не сверхпроводники, а так называемые холодные атомы, которые удерживаются внутри лазерных ловушек при сверхнизких температурах. Это позволило физикам создать самый большой в мире квантовый вычислитель из 51 кубита и обойти своих коллег группы Кристофера Монро из университета штата Мэриленд (5-кубитныое устройство) и группы Джона Мартиниса из компании Google (22-кубитное устройство).

Образно говоря, при строительстве кубитного компьютера физики вернулись от цифровых к аналоговым устройствам первой половины прошлого века. Теперь их задача - перейти к «цифре» на новом, квантовом уровне. Используя набор кубитов на основе «холодных атомов», команда Лукина уже смогла решить несколько частных физических задач, чрезвычайно сложных для моделирования при помощи классических компьютеров.

В ближайшее время ученые намерены продолжить эксперименты с квантовым компьютером. Помимо решения чисто научных задач из области квантовой механики профессор Лукин не исключает, что его команда попытается реализовать на нем знаменитый квантовый алгоритм Шора, перед которым бессильны существующие ныне системы шифрования. Но и других практических областей, где новое поколение компьютеров могло бы произвести революцию, множество. Например, гидрометеорология, где сейчас явно не хватает мощности существующих вычислительных устройств для повышения точности прогнозов погоды.

Квантовые компьютеры делают первые шаги, но не за горами время, когда они станут такой же обыденностью, как нынешние ПК.

В пятницу утром, 14 июля, на Международной конференции по квантовым технологиям Михаил Лукин - сооснователь Российского квантового центра и профессор в Гарвардском университете - рассказал о создании его научной группой полностью программируемого 51-кубитного квантового вычислителя. На первый взгляд, такой результат можно назвать внезапным прорывом в этой области - такие гиганты, как Google и IBM, только подбираются к рубежу 50 кубитов в квантовом компьютере. Буквально вчера на сервере препринтов arXiv.org появилось подробное описание эксперимента. Редакция N + 1 решила разобраться в том, что же все-таки произошло и чего ждать от нового квантового компьютера.

Коротко о квантовых компьютерах - универсальных и неуниверсальных

На что похож 51-кубитный компьютер?

Разберемся с системой, созданной физиками в новой работе. Роль кубитов в ней играют холодные атомы рубидия, захваченные в оптическую ловушку. Сама ловушка представляет собой массив из 101 оптического пинцета (сфокусированного лазерного луча). Атом удерживается пинцетом в равновесном положении за счет градиента электрического поля - он притягивается к области с максимальной напряженностью электрического поля, которая находится в точке фокуса пинцета. Так как все пинцеты выстроены в ряд, все атомы-кубиты компьютера также выстроен в цепочку.

«Ноль» для каждого из атомов рубидия - его основное, невозбужденное состояние. «Единица» - специально подготовленное ридберговское состояние. Это такое возбужденное состояние, в котором внешний электрон рубидия оказывается очень далеко от ядра (на 50-й, 100-й, 1000-й орбитали), но по-прежнему остается с ним связан. Из-за большого радиуса ридберговские атомы начинают взаимодействовать (отталкиваться) на гораздо больших расстояниях, чем обычные. Это отталкивание и позволяет превратить ряд из 51 атома рубидия в цепочку сильно взаимодействующих частиц.

Для управления состояниями кубитов используется отдельная система лазеров, способная возбуждать их в ридберговское состояние. Главная и важнейшая особенность нового вычислителя - возможность напрямую адресоваться к каждому из 51 кубита. Существуют и более сложные ансамбли атомов, в которых наблюдаются запутанные квантовые состояния (недавно мы о 16 миллионах атомов, запутанных взаимодействием с одним фотоном), а квантовое моделирование выполняли и на более чем сотне холодных атомов. Но во всех этих случаях у ученых не было возможности точно контролировать систему. Именно поэтому новая система называется полностью программируемым квантовым компьютером.

Каждое вычисление на квантовом компьютере - в некотором смысле моделирование реальной квантовой системы. Основная часть новой работы посвящена моделированию хорошо известной квантовой системы - модели Изинга. Она описывает цепочку (в данном случае) частиц с ненулевыми спинами (магнитными моментами), взаимодействующих со своими соседями. Модель Изинга часто привлекают для описания магнетизма и магнитных переходов в твердых телах.

Эксперимент был построен следующим образом. Сначала частицы охлаждали и захватывали в оптические пинцеты. Это вероятностный процесс, поэтому поначалу массив частиц был хаотичным. Затем с помощью последовательности измерений и корректировок создавался бездефектный массив из более чем 50 холодных атомов в основном невозбужденном состоянии. На следующем этапе оптические пинцеты отключали и одновременно с этим включали систему, возбуждавшую атомы в ридберговское состояние. Некоторое время система эволюционировала под действием ван-дер-ваальсовых сил - атомы занимали наиболее «удобные» для них позиции, после чего пинцеты снова включали и изучали результат эволюции.

В зависимости от того, как близко располагались холодные атомы до возбуждающего импульса, физики наблюдали разные результаты эволюции. Это связано с тем, что ридберговские атомы способны подавлять возбуждение соседей до ридберговских состояний (из-за сильного отталкивания). Ученые наблюдали системы, в которых атомы после эволюции оказывались упорядочены так, что между каждой парой соседних ридберговских атомов был строго один, строго два или строго три обычных.

Интересно, что образование очень упорядоченных структур после свободной эволюции происходило с очень большой вероятностью - даже в случае массива из 51 холодного атома.

Чтобы посмотреть, как происходит процесс эволюции, ученые включали пинцеты и «фотографировали» систему в разные моменты времени. Оказалось, что в некоторых случаях эволюция к состоянию равновесия происходила очень медленно: система долгое время колебалась между несколькими состояниями. Этот результат можно подтвердить грубым классическим моделированием, вовлекая в анализ взаимодействия между соседними и следующими за соседними атомами.

Полезно ли это?

Это один из тех случаев, когда квантовое моделирование предсказывает реальный новый эффект. Стоит заметить, что точно смоделировать систему из 51 холодного атома с помощью классического компьютера невозможно. Чтобы только описать все возможные ее состояния потребуется 2 51 бита оперативной памяти (около петабайта). Подтвердить этот эффект удалось лишь грубым моделированием на классическом компьютере.

Интересно, что ровно обратная ситуация возникает при квантово-химических расчетах - классические компьютеры дают лишь приблизительную оценку свойств для сложных систем, затрачивая на это огромные вычислительные ресурсы. В то же время прямой анализ этих, безусловно, квантовых систем дает точный результат.

А для чего еще он пригодится?

В конце препринта авторы традиционно приводят список областей, в которых может быть полезна новая разработка. Можно перечислить некоторые из них: создание суперпозиций, состоящих из большого количества частиц, исследование топологических состояний в спиновых системах. Физики отдельно отмечают, что алгоритм хорошо подходит для решения задач оптимизации систем, размеры которых заведомо превышают предел досягаемости обычных компьютеров. Эти задачи включают в себя моделирование химических реакций и обучение .

Созданная Михаилом Лукиным и его коллегами система работает сейчас как квантовый симулятор - она моделирует системы, подобные самой себе. Однако стоит заметить, что на отдельных парах ридберговских атомов физикам уже удавалось создавать логические CNOT -вентили, используемые для создания запутанности. Поэтому можно говорить о том, что в новой системе можно реализовать некоторые простейшие алгоритмы (к примеру, алгоритм Дойча, или алгоритм Шора для очень маленьких чисел). Однако на данном этапе эти алгоритмы не будут полезными.

Михаил Лукин (слева) и Джон Мартинис (справа) - глава группы, разрабатывающей 49-кубитный квантовый компьютер в Google

Российский квантовый центр

В некотором смысле новое устройство уже сейчас способно решать задачи, недоступные для классических компьютеров - его невозможно точно смоделировать обычными компьютерами. Но говорить о полезном квантовом превосходстве, которое уже сейчас пригодится в прикладных задачах, еще рано. Многие ученые отмечают, что гонка за квантовым превосходством сейчас не несет в себе ничего полезного с точки зрения прикладных вычислительных задач.

Стоит заметить, что эксперименты с атомами в оптических решетках уже несколько лет назад превзошли предел досягаемости точного моделирования классическими компьютерами. В них используются десятки связанных между собой частиц. Например, с их помощью квантовые кооперативные явления, родственные сверхтекучести и сверхпроводимости. Является ли это квантовым превосходством?

Владимир Королёв