Световой дуализм. Корпускулярно-волновой дуализм – миф или реальность? Уравнение Шредингера для стационарных состояний

Типичные примеры объектов, проявляющих двойственное корпускулярно-волновое поведение - электроны и свет ; принцип справедлив и для более крупных объектов, но, как правило, чем объект массивнее, тем в меньшей степени проявляются его волновые свойства (речь здесь не идёт о коллективном волновом поведении многих частиц, например, волны на поверхности жидкости).

Идея о корпускулярно-волновом дуализме была использована при разработке квантовой механики для интерпретации явлений, наблюдаемых в микромире, с точки зрения классических концепций. В действительности квантовые объекты не являются ни классическими волнами, ни классическими частицами, проявляя свойства первых или вторых лишь в зависимости от условий экспериментов, которые над ними проводятся. Корпускулярно-волновой дуализм необъясним в рамках классической физики и может быть истолкован лишь в квантовой механике .

Дальнейшим развитием представлений о корпускулярно-волновом дуализме стала концепция квантованных полей в квантовой теории поля .

Волны де Бройля

Количественное выражение принцип корпускулярно-волнового дуализма получает в идее волн де Бройля. Для любого объекта, проявляющего одновременно волновые и корпускулярные свойства, имеется связь между импульсом p {\displaystyle \mathbf {p} } и энергией E {\displaystyle E} , присущими этому объекту как частице, и его волновыми параметрами - волновым вектором k {\displaystyle \mathbf {k} } , длиной волны λ {\displaystyle \lambda } , частотой ν {\displaystyle \nu } , циклической частотой ω {\displaystyle \omega } . Эта связь задаётся соотношениями :

p = ℏ k ; | p | = h / λ , {\displaystyle \mathbf {p} =\hbar \mathbf {k} ;\ |\mathbf {p} |=h/\lambda ,} E = ℏ ω = h ν , {\displaystyle E=\hbar \omega =h\nu ,}

где ℏ {\displaystyle \hbar } и h = 2 π ℏ {\displaystyle h=2\pi \hbar } - редуцированная и обычная постоянная Планка , соответственно. Эти формулы верны для релятивистских энергии и импульса.

Волна де Бройля ставится в соответствие любому движущемуся объекту микромира; таким образом, в виде волн де Бройля и свет, и массивные частицы подвержены интерференции и дифракции . В то же время чем больше масса частицы, тем меньше её дебройлевская длина волны при той же скорости, и тем сложнее зарегистрировать её волновые свойства. Грубо говоря, взаимодействуя с окружением, объект ведёт себя как частица, если длина его дебройлевской волны много меньше характерных размеров, имеющихся в его окружении, и как волна - если много больше; промежуточный случай может быть описан только в рамках полноценной квантовой теории.

Физический смысл волны де Бройля таков: квадрат модуля амплитуды волны в определённой точке пространства равен плотности вероятности обнаружения частицы в данной точке, если будет проведено измерение её положения. В то же время, пока измерение не проведено, частица в действительности не находится в каком-либо одном конкретном месте, а «размазана» по пространству в виде дебройлевской волны.

История развития

Вопросы о природе света и вещества имеют многовековую историю, однако до определённого времени считалось, что ответы на них обязаны быть однозначными: свет - либо поток частиц, либо волна; вещество либо состоит из отдельных частиц, подчиняющихся классической механике , либо представляет собой сплошную среду.

Казавшееся устоявшимся волновое описание света оказалось неполным, когда в 1901 году Планк получил формулу для спектра излучения абсолютно чёрного тела , а затем Эйнштейн объяснил фотоэффект , опираясь на предположение, что свет с определённой длиной волны излучается и поглощается исключительно определёнными порциями. Такая порция - квант света, позднее названный фотоном - переносит энергию, пропорциональную частоте световой волны с коэффициентом h {\displaystyle h} - постоянная Планка . Таким образом, оказалось, что свет проявляет не только волновые, но и корпускулярные свойства.

Более конкретное и корректное воплощение принцип корпускулярно-волнового дуализма получил в «волновой механике» Шрёдингера, которая затем превратилась в современную квантовую механику.

Можно сказать, что для атомного объекта существует потенциальная возможность проявлять себя, в зависимости от внешних условий, либо как волна, либо как частица, либо промежуточным образом. Именно в этой потенциальной возможности различных проявлений свойств, присущих микрообъекту, и состоит дуализм волна - частица. Всякое иное, более буквальное, понимание этого дуализма в виде какой-нибудь модели неправильно.

Корпускулярно-волновой дуализм света

Как классический пример применения принципа корпускулярно-волнового дуализма, свет можно трактовать как поток корпускул (фотонов), которые во многих физических эффектах проявляют свойства классических электромагнитных волн . Свет демонстрирует свойства волны в явлениях дифракции и интерференции при масштабах, сравнимых с длиной световой волны. Например, даже одиночные фотоны, проходящие через двойную щель , создают на экране интерференционную картину, определяемую уравнениями Максвелла .

Тем не менее, эксперимент показывает, что фотон не есть короткий импульс электромагнитного излучения, например, он не может быть разделён на несколько пучков оптическими делителями лучей, что наглядно показал эксперимент, проведённый французскими физиками Гранжье, Роже и Аспэ в 1986 году . Корпускулярные свойства света проявляются в закономерностях равновесного теплового излучения, при фотоэффекте и в эффекте Комптона . Фотон ведёт себя и как частица, которая излучается или поглощается целиком объектами, размеры которых много меньше его длины волны (например, атомными ядрами), или вообще могут считаться точечными (например, электрон).

Чем меньше длина волны электромагнитного излучения, тем больше энергия и импульс фотонов и тем труднее обнаружить волновые свойства этого излучения. Например, рентгеновское излучение дифрагирует только на очень «тонкой» дифракционной решётке - кристаллической решётке твёрдого тела.

Волновое поведение крупных объектов

Волновое поведение проявляют не только элементарные частицы и нуклоны, но и более крупные объекты - молекулы. В 1999 году впервые наблюдалась дифракция фуллеренов . В 2013 году удалось добиться дифракции молекул массой более 10000 а.е.м. , состоящих более чем из 800 атомов каждая .

Тем не менее, нет полной уверенности, могут ли в принципе проявлять волновое поведение объекты с массой, превышающей планковскую .

См. также

Примечания

  1. Слово «корпускула» означает «частица» и вне контекста корпускулярно-волнового дуализма практически не используется.
  2. Герштейн С. С. Корпускулярно-волновой дуализм // Физическая энциклопедия : [в 5 т.] / Гл. ред. А. М. Прохоров . - М. : Советская энциклопедия, 1990. - Т. 2: Добротность - Магнитооптика. - С. 464-465. - 704 с. - 100 000 экз. -
  • 8. Ннтерференционные приборы и их применение.
  • 9. Принцип Гюйгенса-Френеля.
  • 10. Метод зон Френеля.
  • 11. Явление дифракции. Дифракция Френеля на круглом отверстии.
  • Дифракция френеля на круглых отверстиях
  • 12. Явление дифракции. Дифракция Френеля на непрозрачном диске.
  • 14. Дифракционная решетка. Главные и дополнительные максимумы и минимумы.
  • 15. Расчет формулы дифракционной решетки
  • 16. Применение дифракционной решетки. Разрешающая способность.
  • Применение явлений д-ии света
  • 17. Дифракция рентгеновских лучей.
  • 18 .Основы голограмм.
  • 19. Дисперсия света.
  • 33. Квантовая теория Планка. Формула Планка.
  • 20. Электронная теория дисперсии света.
  • 21. Поглощение света. Закон Бугера.
  • В прозрачных изотропных средах и в кристаллах куб. Системы может возникать двойной луч преломления под влиянием внеш. Воздейс–й, в частности это происходит при мех. Дифор. Тв. Тел.
  • 27. Вращение плоскости поляризации. Эффект Фарадея.
  • 28. Тепловое излучение и его характеристики.
  • 29. Закон Кирхгофа для равновесного излучения.
  • 30 Абсолютно черное тело. Закон Стефана-Больцмана.
  • 72. Ядерные реакции и законы сохранения.
  • 31. Абсолютно черное тело. Закон смещения Вина.
  • 32. Абсолютно черное тело. Формула Релея-Джинса.
  • 34. Внешний фотоэффект и его законы.
  • 35. Уравнение Эйнштейна для внешнего фотоэффекта.
  • 36. Модель атома Резерфорда и ее недостатки.
  • 37. Закономерности в спектре излучения атома водорода.
  • 38. Постулаты Бора. Модель атома Бора.
  • 39. Корпускулярно-волновой дуализм свойств вещества.
  • 44. Уравнение Шредингера для стационарных состояний.
  • 40. Волны де Бройля и их свойства.
  • 41. Соотношение неопределенности Гейзенберга.
  • 42. Волновая функция и её статический смысл.
  • 43. Общее уравнение Шредингера нерелятивистской квантовой механики
  • 45. Прохождение частицы через потенциальный барьер.
  • 46. Решение уравнения Шредингера для водородоподобных атомов
  • 47. Квантовые числа, их физический смысл.
  • 49. Спин электрон. Спиновое квантовое число.
  • 48. Пространственное распределение электрона в атоме водорода.
  • 50. Принцип Паули. Распределение электронов в атоме по состояниям.
  • 55. Спонтанное и вынужденное излучение фотонов.
  • 51. Периодическая система Менделеева.
  • 52. Рентгеновские спектры. Природа сплошного и характеристического рентгеновских спектров.
  • 73. Реакция деления ядер.
  • 53. Физическая природа химической связи в молекулах. Понятие об энергетических уровнях.
  • 54. Колебательные и вращательные спектры молекул.
  • 56. Принцип работы квантового генератора.
  • 57. Твердотельные и газоразрядные лазеры. Их применение.
  • 58. Фононы. Теплоемкость кристаллической решетки.
  • 59. Элементы зонной теории в кристаллах.
  • 60. Энергетические зоны в кристаллах. Валентная и зона проводимости.
  • 61. Заполнение зон: диэлектрики, проводники, полупроводники по зонной теории.
  • 63. Основы квантовой теории электропроводимости металла. Сверхпроводимость.
  • 66. Электронные и дырочные полупроводники.
  • 62. Понятие о квантовой статистике Ферми-Дирака. Уровень Ферми.
  • 64. Собственная проводимость полупроводников.
  • 65. Примесная проводимость полупроводников.
  • 67. Контакт электронного и дырочного полупроводников …
  • 68. Строение атомных ядер. Массовое и зарядовые числа. Нуклоны.
  • 69. Взаимодействие нуклонов. Свойства и природа ядерных сил.
  • 71. Правила смещения. Α-распад. Взаимопревращения …
  • 70. Естественная радиоактивность. Закон радиоактивного распада.
  • 75. Термоядерная реакция и проблемы её управления.
  • 76. Элементарные частицы. Космическое излучение. …
  • 74. Цепная реакция деления ядер. Ядерный реактор.
  • 39. Корпускулярно-волновой дуализм свойств вещества.

    Корпускулярно-волновой дуализм свойств ЭМ излучения. Это означает, что природу света можно рассматривать с двух сторон: с одной стороны это волна, свойства которой проявляются в закономерностях распространения света, интерференции, дифракции, поляризации. С другой стороны свет - это поток частиц, обладающие энергией, импульсом. Корпускулярные свойства света проявляются в процессах взаимодействия света с веществом (фотоэффект, эффект Комптона).

    Анализируя можно понять, что чем больше длина волны l, тем меньше энергия (из Е= hс/l), тем меньше импульс, тем труднее обнаруживаются квантовые свойства света.

    Чем меньше l => больше энергия Е фотона, тем труднее обнаруживаются волновые свойства света.

    Взаимосвязь между двойственными корпускулярно-волновыми свойствами света можно объяснить, если использовать статистический подход к рассмотрению закономерностей распределения света.

    Например, дифракция света на щели: при прохождении света через щель происходит перераспределение фотонов в пространстве. Так как вероятность попадания фотона в различные точки экрана неодинаковая, то возникает дифракционная картина. Освещенность экрана (количество фотонов на него падающих) пропорциональна вероятности попадания фотона в эту точку. С другой стороны освещенность экрана пропорциональна квадрату амплитуды волны I~E 2 . Поэтому квадрат амплитуды световой волны в данной точке пространства является мерой вероятности попадания фотона в эту точку пространства.

    44. Уравнение Шредингера для стационарных состояний.

    Уравнение (217.5) называется уравнением Шредингера для стационарных состояний. В это уравнение в качестве параметра входит полная энергия Е частицы. В теории дифференциальных уравнений доказывается, что подобные уравнения имеют бесчисленное множество решений, из которых посредством наложения граничных условий отбирают решения, имеющие физический смысл. Для уравнения Шредингера такими условиями являются условия регулярности волновых функций: волновые функции должны быть конечными, однозначными и непрерывными вместе со своими первыми производными. Таким образом, реальный физический смысл имеют только такие решения, которые выражаются регулярными функциями  Но регулярные решения имеют место не при любых значениях параметра Е, а лишь при определенном их наборе, характерном для данной задачи. Эти значения энергии называются собственными. Решения же, которые соответствуют собственным значениям энергии, называются собственными функциями. Собственные значения Е могут образовывать как непрерывный, так и дискретный ряд. В первом случае говорят о непрерывном, или сплошном, спектре, во втором - о дискретном спектре.

    40. Волны де Бройля и их свойства.

    Де Бройль утверждал, что не только фотоны, но и электроны и любые другие частицы материи наряду с корпускулярными обладают так­же волновыми свойствами. Итак, согласно де Бройлю, с каждым микрообъектом связываются, с одной стороны, корпускулярные характеристики - энергия Е и импульс р, а с другой - волновые характеристики - частота v и длина волны К. Количественные соотношения, связывающие корпускулярные и волновые свойства частиц, такие же, как для фотонов: E = hv , p = h / . (213.1) Смелость гипотезы де Бройля заключалась именно в том, что соотношение (213.1) постулировалось не только для фотонов, но и для других микрочастиц, в частности для таких, которые обладают массой покоя. Таким образом, любой частице, обладающей импульсом, сопоставляют волновой процесс с длиной волны, определяемой по формуле де Бройля: = h / p . (213.2) Это соотношение справедливо для любой частицы с импульсом р. Вскоре гипотеза де Бройля была подтверждена экспериментально. (К. Дэвиссон, Л. Джермер) обнаружили, что пучок электронов, рассеивающийся от естественной дифракционной решетки - кристалла никеля, - дает отчетливую дифракционную картину. Дифракционные максимумы соответствовали формуле Вульфа - Брэггов (182.1), а брэгговская длина волны оказалась в точности равной длине волны, вычисленной по формуле (213.2). В дальнейшем формула де Бройля была подтверждена опытами П. С. Тартаковского и Г. Томсона, наблюдавших дифракционную картину при прохождении пучка быстрых электронов (энергия 50 кэВ) через металлическую фольгу (толщиной 1 мкм). Так как дифракционная картина исследовалась для потока электронов, то необходимо было доказать, что волновые свойства присущи не только потоку большой совокупности электронов, но и каждому электрону в отдельности. Это удалось экспериментально подтвердить в 1948 г. советскому физику В. А. Фабриканту (р. 1907). Он показал, что даже в случае столь слабого электронного пучка, когда каждый электрон проходит через прибор независимо от других (промежуток времени между двумя электронами в 10 4 раз больше времени прохождения электроном прибора), возникающая при длительной экспозиции дифракционная картина не отличается от дифракционных картин, получаемых при короткой экспозиции для потоков электронов, в десятки миллионов раз более интенсивных. Следовательно, волновые свойства частиц не являются свойством их коллектива, а присущи каждой частице в отдельности. Впоследствии дифракционные явления обнаружили также для нейтронов, протонов, атомных и молекулярных пучков. Экспериментальное доказательство наличия волновых свойств микрочастиц привело к выводу о том, что перед нами универсальное явление, общее свойство материи. Но тогда волновые свойства до­лжны быть присущи и макроскопическим телам. Почему же они не обнаружены экспериментально? Например, частице массой 1 г, движущейся со скоростью 1 м/с, соответствует волна де Бройля с =6,62 10 -31 м. Такая длина волны лежит за пределами доступной наблюдению области (периодических структур с периодом d10 -31 м не существует). Поэтому считается, что макроскопические тела проявляют только одну сторону своих свойств - корпускулярную - и не проявляют волновую. Представление о двойственной корпускулярно-волновой природе частиц вещества углубляется еще тем, что на частицы вещества переносится связь между полной энергией частицы г и частотой v волн де Бройля: e=hv. (213.3) Это свидетельствует о том, что соотношение между энергией и частотой в формуле (213.3) имеет характер универсального соотношения, справедливого как для фотонов, так и для любых других микрочастиц. Справедливость же соотношения (213.3) вытекает из согласия с опытом тех теоретических результатов, которые получены с его помощью в квантовой механике, атомной и ядерной физике. Подтвержденная экспериментально гипотеза де Бройля о корпускулярно-волновом дуализме свойств вещества коренным образом изменила представления о свойствах микрообъектов. Всем микро­объектам присущи и корпускулярные, и волновые свойства; в то же время любую из микрочастиц нельзя считать ни частицей, ни волной в классическом понимании. Современная трактовка корпускулярно-волнового дуализма может быть выражена словами советского физика-теоретика В. А. Фока (1898-1974): «Можно сказать, что для атомного объекта существует потенциальная возможность проявлять себя, в зависимости от внешних условий, либо как волна, либо как частица, либо промежуточным образом. Именно в этой потенциальной возможности различных проявлений свойств, присущих микрообъекту, и состоит дуализм волна - частица. Всякое иное, более буквальное, понимание этого дуализма в виде какой-нибудь модели неправильно».

    Итак, микрочастицы обладают необычайными свойствами. Микрочастицы это элементарные частицы (электроны, протоны, нейтроны и т.д.), а также сложные частицы , образованные из небольшого числа элементарных (пока неделимых ) частиц (атомы, молекулы, ядра атомов). Называя эти микрочастицы частицами, мы подчеркиваем только одну сторону, правильнее было бы назвать «частица-волна ».

    Микрочастицы не способны непосредственно воздействовать на наши органы чувств – ни видеть, ни осязать их нельзя. Мы знаем, что будет с большим предметом; но именно так микрочастицы не поступают! Поэтому, изучая их, приходится прибегать к различного рода абстракциям, напрягать воображение и не пытаться связывать их с нашим непосредственным опытом.

    В доквантовой физике понять – значить составить себе наглядный образ объекта или процесса. В квантовой физике так рассуждать нельзя. Всякая наглядная модель будет действовать по классическим законам, и поэтому не пригодна для представления квантовых процессов. Например, вращение электрона по орбите вокруг атома – такое представление. Это дань классической физике и не соответствует истинному положению вещей, не соответствует квантовым законам.

    Рассмотренные нами волны Луи де Бройля не являются электромагнитными , это волны особой природы.

    Вычислим дебройлевскую длину волны мячика массой 0,20 кг, движущегося со скоростью 15 м/с.

    . (3.3.1)

    Это чрезвычайно малая длина волны. Даже при крайне низких скоростях, скажем м/с, дебройлевская длина волны составляла бы примерно м. Дебройлевская длина волны обычного тела слишком мала, чтобы ее можно было обнаружить и измерить. Дело в том, что типичные волновые свойства – интерференция и дифракция – проявляются только тогда, когда размеры предметов или щелей сравнимы по своей величине с длиной волны. Но нам не известны предметы и щели, на которых могли бы дифрагировать волны с длиной волны , поэтому волновые свойства обычных тел обнаружить не удается.

    Другое дело, если речь идет об элементарных частицах типа электронов. Т.к. масса входит в знаменатель формулы 3.3.1, определяющей дебройлевскую длину волны, очень малой массе соответствует большая длина волны.

    Определим дебройлевскую длину волны электрона, ускоренного разностью потенциалов 100 В.

    м/с,

    Из приведенного примера видно, что электрон может соответствовать длине волны порядка . Хотя это очень короткие волны, их можно обнаружить экспериментально: межатомные расстояния в кристалле того же порядка величины () и регулярно расположенные атомы кристалла можно использовать в качестве дифракционной решетки, как в случае рентгеновского излучения. Итак, если гипотеза Луи де Бройля справедлива, то, как указал Эйнштейн, для электронов должно наблюдаться явление дифракции .

    Отвлечемся на время и поставим мысленный эксперимент. Направим на преграду с двумя узкими щелями параллельный пучок моноэнергетических (т.е. обладающих одинаковой кинетической энергией) электронов (рис. 3.6), за преградой поставим фотопластину (Фп).

    а б в

    Сначала закроем вторую щель и произведем экспонирование в течение времени t . Почернение на обработанной Фп будет характеризоваться кривой 1, рис. 3.6, б. Затем закроем первую щель и произведем экспонирование второй фотопластины. Характер почернения передается в этом случае кривой 2 (рис. 3.6, б). Наконец, откроем обе щели и подвергнем экспонированию в течение времени t третью пластину. Картина почернения, получающаяся в последнем случае, изображена на рис. 3.6, в. Эта картина отнюдь не эквивалентна положению первых двух. Каким образом открывание второй щели может повлиять на те электроны, которые, казалось бы, прошли через другую щель? Полученная картина (рис. 3.6, в) оказывается аналогичной картине, получающейся при интерференции двух когерентных световых волн. Характер картины свидетельствует о том, что на движение каждого электрона оказывают влияние оба отверстия. Такой вывод несовместим с представлением о траекториях. Если бы электрон находился в каждый момент в определенной точке пространства и двигался по траектории, он проходил бы через определенное отверстие – первое или второе. Явление же дифракции доказывает, что в прохождении каждого электрона участвуют оба отверстия – и первое, и второе.

    Таким образом, дифракция электронов и других микрочастиц доказывает справедливость гипотезы Луи де Бройля и подтверждает корпускулярно-волновой дуализм микрочастиц вещества .

    В настоящей статье на основе физической сущности постоянной Планка показано, что гипотеза Л. Де Бройля о всеобщем характере корпускулярно-волнового дуализма не корректна и не имеет ни теоретического, ни экспериментального подтверждения.

    “…трудности и проблемы, которые возникают в связи с квантовыми явлениями, являются чисто физическими и решаться должны путем углубления научных представлений, без всякого ухода в сторону с помощью гносеологических или мистических измышлений.”

    Мифология квантовой физики. Л. Регельсон.

    Введение. Согласно современным представлениям : корпускулярно-волновой дуализм — важнейшее универсальное свойство природы, заключающееся в том, что всем микрообъектам присущи одновременно и корпускулярные и волновые характеристики. Так, например электрон, нейтрон, фотон в одних условиях проявляются как частицы, движущиеся по классическим траекториям и обладающие определенной энергией и импульсом, а в других — обнаруживают свою волновую природу, характерную для явлений интерференции и дифракции частиц. В качестве первичного принципа корпускулярно—волновой дуализм лежит в основе квантовой механики и квантовой теории поля.

    В современном научном представлении прочно утвердилось мнение, что одной из главных особенностей квантовой физики является наличие в ней корпускулярно-волнового дуализма. Например:

    “Концепция корпускулярно-волнового дуализма является одним из базовых понятий современной квантовой теории.”

    “Важным этапом в становлении современного понимания структуры материи стала выдвинутая де Бройлем в 1924 г. гипотеза об универсальности корпускулярно-волнового дуализма.”

    “Из всего предшествовавшего мы делаем вывод, что микроскопические объекты обладают чрезвычайно общим свойством обнаруживать себя в двух на первый взгляд несовместимых аспектах: с одной стороны, как суперпозиция волн, с другой – как частица, т. е. локализованная порция энергии и импульса.”

    “Корпускулярно-волновой дуализм свойств вещества, находящегося как в форме излучения, так и в форме частиц с массой покоя, не равной нулю, является важнейшей характеристикой вещества, лежащей в основе различных фундаментальных закономерностей, характеризующих микромир.”

    В начале ХХ века были сделаны ряд важнейших открытий (фотоэффект, эффект Комптона, дифракция электронов и т. п.), которые создали видимость того, что элементарные частицы вещества, в частности электроны, обладают не только корпускулярными, но и волновыми свойствами. Таким путем было доказано экспериментально, что между веществом и полем не существует непроходимой границы: в определенных условиях элементарные частицы вещества обнаруживают волновые свойства, а частицы поля – свойства корпускул. Это получило название дуализма волны и частицы и было представлением, которое никак не укладывалось в рамки обычного здравого смысла .

    Противоречие между понятиями пространственно протяженного поля и пространственно локализованной частицы оказалось настолько глубоким, что возникла целая философская школа, которая вообще отказалась от классического способа описания физического объекта как реальности в пространстве и времени, не зависящей от приборов, используемых для наблюдения. В поисках реалистического выхода из создавшегося положения наметились два основных пути: Де-Бройль и Бом считали необходимым сохранить понятие локализованной частицы (корпускулы) в числе основных понятий теории, тогда как Планк и в особенности Шредингер отстаивали монистическую волновую картину.

    Первый путь оказался связанным с искусственностью теоретических предпосылок и привел к большим математическим трудностям. Второй путь представляется более конструктивным, так как успешно работающий математический аппарат квантовой физики соответствует именно волновой картине: корпускулярный аспект появляется только в процессе интерпретации. Однако сразу же возникает вопрос: может ли реалистическая волновая картина быть согласована с простейшими экспериментальными фактами? Мы в данной работе приходим к выводу, что такое согласование возможно только в том случае, если предположить экспериментально наблюдаемое нарушение законов сохранения энергии и заряда в единичных взаимодействиях.”

    В интерпретации корпускулярно-волнового дуализма, в расшифровке механизма связи этих противоположных свойств, квантовая механика столкнулась с большими трудностями, полностью не преодоленными и в настоящее время. При механистическом рассмотрении противоположные, корпускулярные и волновые, свойства отрывались друг от друга, становились характеристикой различных объектов. В конечном итоге это привело к пониманию того, что это понятие, в настоящее время практически отвергнуто как неверное .

    Тем не менее, вся современная учебно-методическая и академическая литература использует корпускулярно-волновой дуализм как важное и значимое понятие для объяснения различных явлений физики микромира, игнорируя абсурдность и противоречивость данной концепции. Апеллируя к невозможности в рамках традиционной физики привести весомые доказательства неадекватности данной концепции, в свою очередь разрешение этого логического противоречия, послужившее созданию физических основ квантовой механики и квантовой теории поля , было предложено с помощью отказа от наглядных (классических) представлений о частицах и волнах. Для объяснения волновых явлений на основе корпускулярных представлений было введено описание микрочастиц (и систем микрочастиц) с помощью векторов состояния , подчиняющихся принципу суперпозиции состояний, и принята их статистическая (вероятностная) интерпретация, позволившая избежать формального логического противоречия с корпускулярными представлениями (нахождение частицы одновременно в нескольких различных состояниях). С другой стороны, рассматривая классические (волновые) поля как механическую систему с бесконечным числом степеней свободы и требуя, чтобы эти степени свободы подчинялись определенным условиям квантования, в квантовой теории поля переходят от классических полей к квантовым. В таком подходе частицы выступают как возбуждённые состояния системы (поля). При этом взаимодействию частиц отвечает взаимодействие их полей.

    Существуют и другие попытки решения данной проблемы, в частности, в при диалектическом подходе подчеркивается объективность корпускулярно-волновых свойств, одновременно присущих микрообъекту, но проявляющихся по-разному в зависимости от различных экспериментальных условий; обращается внимание на познание этих противоположных свойств микрообъектов в их единстве и взаимосвязи. Эта интерпретация корпускулярно-волнового дуализма, развитая Ланжевеном, В. А. Фоком, С. Вавиловым и другими учеными, считает микрочастицу не корпускулой и не волной, а чем-то третьим, их синтезом, для чего пока отсутствуют наглядные физические представления. Математическая формулировка этого единства дана в понятии волновой функции.

    Очевидно, что проблема корпускулярно-волнового дуализма не в неблагоприятно сложившихся для него обстоятельствах, а в головах ее создателей, которые сделали попытку обобщения представления о корпускулярно-волновой двойственности фотона на все объекты микромира и, прежде всего, на электроны.

    Исходя из выше изложенного становится актуальной задача интерпретации такого состояния этой проблемы в настоящее время, в виду того, что она определяет пути развития физики в целом: или путь процветания мифотворчества, или развитие современных концепций, например эфиродинамики, устраняющих проблемы традиционной физики, в том числе и корпускулярно — волновой дуализм.

    Обоснование и анализ корпускулярно-волнового дуализма. В 1900 г. М. Планк показал , что для объяснения закона равновесного теплового излучения необходимо принять гипотезу о дискретном характере излучения, полагая, что энергия излучения кратна некоторой величине ε, названной им квантом энергии: ε = hν , где ν — частота волны, a h — постоянная Планка. Впоследствии выяснилось, что более удобной является величина ħ = h/2π ≈ 1,05·10 -27 эрг·с, тогда ε = ħω, где ω = 2πν — круговая частота волны. Поскольку предположение о дискретном характере излучения противоречило волновой теории света, согласно которой энергия световой волны может принимать любые (непрерывные) значения, пропорциональные квадрату амплитуды электромагнитных колебаний, Планк сначала связывал дискретность энергии излучения со свойствами излучателей (атомов). Однако в 1905 А. Эйнштейн, исходя из экспериментально установленного Вина закона излучения (который является предельным случаем Планка закона излучения , справедливым при больших частотах: ħω >> kT , где Т — абс. температура), показал, что энтропия излучения в области справедливости закона Вина совпадает с энтропией газа, состоящего из частиц с энергией ε = ħω. Так возникло представление о частицах света — фотонах , несущих квант энергии ε = ħω и движущихся со скоростью света . В дальнейшем, исходя из релятивистской кинематики, фотонам был приписан импульс p = (ħω/c) n = ħk, где n — единичный вектор вдоль направления движения фотона, k = (ω/c) n = (2π/λ) n — волновой вектор . Представление о фотонах было успешно использовано для объяснения законов фотоэффекта и спектров тормозного рентгеновского излучения.

    В 1913 Н. Бор использовал постоянную Планка для определения стационарных состояний в атоме водорода. При этом ему удалось объяснить наблюдаемые на опыте спектральные закономерности и выразить через заряд электрона, его массу и постоянную Планка радиус атома и постоянную Ридберга , оказавшиеся в хорошем согласии с экспериментальными данными. Способ нахождения стационарных состояний электронов в атомах был усовершенствован А. Зоммерфельдом, показавшим, что для стационарных орбит классическое действие является целым кратным 2ph. Успех теории Бора, привлёкшего для объяснения атомных явлений квантовые представления и постоянную Планка, которая до этого, казалось, связывала лишь корпускулярные и волновые характеристики электромагнитного излучения, навёл на мысль о существовании корпускулярно-волнового дуализма и для электронов. В связи с этим Л. де Бройль в 1924 г. высказал гипотезу о всеобщем характере корпускулярно-волнового дуализма. Согласно гипотезе де Бройля, любой движущейся частице с энергией ε и импульсом р соответствует волна с ω = ε/ħ и волновым вектором k = p/ħ , так же как с любой волной связаны частицы, обладающие энергией ε = ħω и импульсом p = ħk.

    Первое экспериментальное подтверждение гипотезы де Бройля было получено в 1927 году американскими физиками К. Девиссоном и Л. Джермером. Они обнаружили, что пучок электронов, рассеивающийся на кристалле никеля, дает отчетливую дифракционную картину, подобную той, которая возникает при рассеянии на кристалле коротковолнового рентгеновского излучения. В этих экспериментах кристалл играл роль естественной дифракционной решетки. По положению дифракционных максимумов была определена длина волны электронного пучка, которая оказалась в полном соответствии с вычисленной по формуле де Бройля.

    В следующем 1928 году английский физик Г. Томсон (сын Дж. Томсона , открывшего за 30 лет до этого электрон) получил новое подтверждение гипотезы де Бройля. В своих экспериментах Г. Томсон наблюдал дифракционную картину, возникающую при прохождении пучка электронов через тонкую поликристаллическую фольгу из золота. В последующие годы опыт Г. Томсона был многократно повторен с неизменным результатом, в том числе при условиях, когда поток электронов был настолько слабым, что через прибор единовременно могла проходить только одна частица (В. А. Фабрикант , 1948 г.). Таким образом, было экспериментально доказано, что волновые свойства присущи не только большой совокупности электронов, но и каждому электрону в отдельности.

    Впоследствии дифракционные явления были обнаружены также для нейтронов, протонов, атомных и молекулярных пучков. Экспериментальное доказательство наличия волновых свойств микрочастиц привело к выводу о том, что это универсальное явление природы, общее свойство материи.

    Из выше изложенного очевидно, что абсурдность и противоречивость корпускулярно-волнового дуализма следует искать прежде всего в выше приведенном обосновании. Однако, такое решение будет не полным, если не рассматривать исторические истоки этой проблемы.

    Открытия конца XIX в. - рентгеновских лучей (1895), естественной радиоактивности (Беккерель, 1896), электрона (Дж. Томсон, 1897), радия (Пьер и Мария Кюри, 1898), квантового характера излучения (Планк, 1900) были началом революции в науке. Были разрушены ранее господствовавшие представления о неизменности химических элементов, о без структурности атома, о независимости движения от материальных масс, о непрерывности излучения.

    Однако, по прошествии более чем ста лет в результате деятельности современной физики оказалось, что революционные открытия конца XIX в. так и остались теоретически не решенными, в частности, вопросы генерации рентгеновских лучей рассматриваются на основе теории тормозного электрона (вариант мифа о свободном электроне), теория радиоактивности полна ошибок и противоречий, квантовый характер излучения привел к мистификации постоянных Планка (h) и тонкой структуры (α), а работы, связанные с открытием электрона, перевернули всю теоретическую физику с ног на голову. Как было показано в работах открытие электрона не только было мифологизировано, но и повлекло ряд грубейших ошибок: о квантованности и дискретности электрического заряда; о существовании элементарного электрического заряда; о придании фундаментальности манипулированным результатам эксперимента Милликена, в котором даже не установлен физический носитель электрического заряда; о бездоказательном и фривольном присвоении электрону отрицательного электрического заряда равного элементарному. Если к этому добавить, что современная физика не имеет представления, за редким исключением, о структурах основных элементарных частиц (протона, электрона, фотона), механизмах их генерации, функциональном назначении, об их параметрах и свойствах, то понятие корпускулярно-волнового дуализма и его обоснование становятся очередным мифом, рожденным в анналах квантовой механики.

    Как показано в работе корпускулярно-волновой дуализм фотона это не совсем удачное отображение специфического характера движения фотона в пространстве по винтовой траектории, а постоянная Планка это коэффициент пропорциональности, устанавливающий взаимосвязь между собственным гироскопическим моментом фотона и отношением круговых частот вращения (вокруг собственной и оси прямолинейного движения), имеющий характер квазипостоянной во всей области существования фотона:

    М = h ω λ / ω γλ , (1)

    где М = m λ r γλ 2 ω γλ — собственный гироскопический момент, r γλ — радиус тела, ω γλ –круговая частота вращения вокруг собственной оси, ω λ = ν — круговая частота вращения вокруг оси прямолинейного движения, m λ – масса фотона.

    Согласно современным представлениям постоянная Планка это основная константа квантовой теории , относительно которой на XXIV Генеральной конференции по мерам и весам (ГКМВ) 17-21 октября 2011 года была единогласно принята резолюция, в которой, в частности, предложено в будущей ревизии Международной системы единиц (СИ) переопределить единицы измерений СИ таким образом, чтобы постоянная Планка была равной точно 6,62606X·10 −34 Дж·с, где Х заменяет одну или более значащих цифр, которые будут определены в дальнейшем на основании наиболее точных рекомендаций CODATA .

    В работе показано, что значение h = 6,62606X·10 −34 Дж·с соответствует удвоенному значению постоянной Планка фотона рентгеновского диапазона излучения длиной волны λ ≈ 225 нм, чем ставит вопрос об адекватности квантовой теории.

    Постоянная Планка это параметр фотона и только фотона. Это утверждение является следствием физической сущности постоянной Планка (1): из всех известных элементарных частиц, только фотон движется в пространстве по винтовой траектории, т. е. обладает двумя круговыми движениями – вокруг собственной оси и оси прямолинейного движения. Поэтому использование Бором и Зоммерфельдом постоянной Планка для определения стационарных состояний электронов в атоме водорода следует считать некорректным, в виду несоответствия ее сущности. Как известно , впоследствии теория Бора была отнесена в область мифологии квантовой физики. В связи с выше изложенным и гипотеза Л. Де Бройля о всеобщем характере корпускулярно-волнового дуализма не соответствует истине. А, если принять во внимание, что электрон в атоме не имеет самостоятельного движения и его электрический заряд положительный и меньше электрического заряда протона , то гипотезу Л. Де Бройля тоже можно отнести к мифологии квантовой физики. Эти рассуждения можно повторить и для других микрочастиц: нейтронов, протонов, атомных и молекулярных пучков.

    Что касается экспериментального подтверждения корпускулярно-волнового дуализма, то в этой части некорректность интерпретации заключена в следующем.

    Во всех экспериментах, начиная от опытов К. Дэвиссона и Л. Джермера, физики-экспериментаторы исходили из условия генерации экспериментальной установкой пучка электронов, никем не доказанное и не обоснованное, а принимаемое на веру при не понимании ошибок, допущенных теоретической физикой, обусловленных мифом об открытии электрона.

    Грубейшей ошибкой физики начала ХХ в. , стало отождествление представлений атомарного электричества и атомов вещества. Одним из результатов такого отождествления стало появление в обиходе физики модели свободных электронов , также известна как модель Зоммерфельда или модель Друде-Зоммерфельда, - простая квантовая модель поведения валентных электронов в атоме металла , разработана Зоммерфельдом на основе классической модели Друде с учётом квантово-механической статистики Ферми - Дирака. Электроны металла рассматриваются в этой модели как Ферми-газ .

    Отличие модели Зоммерфельда от модели Друде в том, что в кинетических процессах участвуют не все валентные электроны металла, а только те, которые имеют энергию в пределах kT от энергии Ферми, где k - постоянная Больцмана, T - температура. Несмотря на свою простоту, модель объясняет много разных явлений, среди которых: термоэлектронная эмиссия и автоэлектронная эмиссия (т. е. работу электронной пушки).

    Модель Зоммерфельда это квантовая модель газа свободных и независимых электронов Ферми, в которой используется распределение Ферми-Дирака, т. е. это модель в математическом описании которой широко используется постоянная Планка. Из выше рассмотренной физической сущности постоянной Планка следует, что ее непосредственное использование в модели Зоммерфельда (как параметра электрона) не корректно и не соответствует модели газа свободных и независимых электронов.

    Модель Друде - классическое описание движения электронов в металлах . Счита­ется, что свободные электроны (электроны, потерявшие связь со «своими» атомами) в металлах подчиняются законам идеального газа. Эта теория была предложена немецким физиком Паулем Друде в 1900 году , т. е. в то время, когда представления об электроне соответствовали представлениям о частицах, несущим электрический заряд, неустановленной физической сущности.

    Таким образом, не корректное использование постоянной Планка – параметра фотона, имеющего характер квазипостоянной (т. е. постоянная Планка является функцией длины волны фотона) в моделях квантовой механики ставит вопрос их применимости не только для обоснования корпускулярно-волнового дуализма, но и для анализа других физических явлений в целом.

    То, что электронные пушки не генерируют потоки электронов можно также обосновать используя представления о физической сущности электрического заряда . Опуская математические расчеты, можно показать, что энергия связи протон-электронных пар, например, для некоторых атомов вещества, будет иметь следующие значения: цезия — (радиус атома 2,98 10 -10 м) 3,465 10 4 эВ, цинка (1,42 10 -10 м) 7,27 10 4 эВ, гелия (0,32 10 -10 м) 3,227 10 5 эВ. В данных примерах приведены данные для протон-электронных пар, у которых электрон является внешним в атоме, т. е. энергия связи для указанных протон-электронных пар атомов является минимальной. Атом цезия является наибольшим (с точки зрения размерности), атом гелия – наименьшим из всех известных из периодической таблицы химических элементов Д. Менделеева.

    В семинарах читаем “Рис. 3.3. Опыт Томсона. …в) Дифракционная картина, полученная при рассеянии электронов с энергией 600 эВ ”. Как видно из выше приведенных энергий связи протон-электронных пар наименьшей энергией электрона в случае разрыва этой связи было бы значение 34.65 КэВ (>> 0.6 КэВ ), если бы в электронной пушке в качестве активированного вещества использовался бы цезий. Так что Томсон никак не мог наблюдать дифракцию электронов, в виду не возможности их генерации с указанной энергией.

    Известно , что излучение мягкого рентгеновского диапазона находится в диапазоне длин волн от 10 нм до 0,1 нм и энергий фотонов 124 эВ -12 400 эВ соответственно. Очевидно, что опыты физиков по “дифракции электронов” больше соответствуют опытам по дифракции фотонов рентгеновского диапазона, на что также указывает совпадение интерференционных картинок.

    Явление интерференции может быть легко объяснено в рамках не только волновой, но и корпускулярной теории и, следовательно, доказательством волновой природы служить не может.

    Выводы. Традиционная физика под дуализмом понимает корпускулярные свойства микрочастиц и волновые свойства движения, причем представления о волне, как возмущение некоторой среды, заменяются представлениями о волне вероятности обнаружить микрочастицу в определенной точке пространства.

    Историческими корнями корпускулярно-волнового дуализма следует считать специфическую форму движения фотона в пространстве по винтовой траектории и постоянную Планка.

    Непонимание физической сущности постоянной Планка и ряд грубейших ошибок теоретической физики начала ХХ века привели к ошибочным представлениям, одним из которых стал корпускулярно-волновой дуализм.

    На сегодняшний день не существует логически верных и экспериментальных доказательств корпускулярно-волнового дуализма в природе.

    Что же касается «квантовой теории», то она больше похожа на математическую абстракцию, удачно аппроксимирующую эмпирические данные.

    Литература :

    1. http://femto.com.ua/articles/part_1/1773.html Корпускулярно-волновой дуализм.
    2. Славнов Д. А. Корпускулярно-волновой дуализм // Физика элементарных частиц и атомного ядра . - 2015. - Т. 46, № 4. - С. 1200–1225.
    3. https://arxiv.org/ftp/arxiv/papers/1006/1006.0016.pdf Горюнов А.В. ИДУЩАЯ ВОЛНА КАК МОДЕЛЬ ЧАСТИЦЫ.
    4. Ишханов Б. С., Степанов М. Е., Третьякова Т. Ю. Семинары по физике частиц и атомного ядра. - КДУ, Университетская книга Москва, 2016. - С. 292.
    5. Квантовая механика (пер. с французского) под ред. Л. Д. Фадеева. Альберт Мессиа. Монография. Т.I. М.: Наука, 1978 г. — 480 с.
    6. Делоне Н.Б. Квантовая природа вещества. - М.: ФИЗМАТЛИТ, 2008. - 208 с.
    7. http://www.km.ru/referats/9289A9AE71E9452B85D5755C15ADF90D Сравнительный анализ и общая характеристика истории развития естественнонаучных картин мира. Лямин В. С., Лямин Д. В. Физическая сущность постоянной Планка.
    8. https://ru.wikipedia.org/wiki/ Модель Друде.
    9. http://chem21.info/info/998127/ Справочник химика 21.
    10. Лямин В. С., Лямин Д. В. Что такое электрический ток.
    11. https://ru.wikipedia.org/wiki/ Электромагни́тный спектр.
    12. https://naukovedenie.ru/PDF/09TVN216.pdf Кочетков А.В., Федотов П.В. Дифракция и интерференция микрочастиц // Интернет-журнал «НАУКОВЕДЕНИЕ» Том 8, №2 (2016).

    Лямин В.С. , Лямин Д. В. г. Львов

    Корпускулярно-волновой дуализм света означает, что свет одновременно обладает свойствами непрерывных электромагнитных волн и свойствами дискретных фотонов. Этот фундаментальный вывод был сделан физиками в XX веке и вытекал из предшествующих представлений о свете. Ньютон считал, что свет - поток корпускул, т. е. поток прямолинейно летящих частиц вещества. Такая теория хорошо объясняла прямолинейное распространение света. Но возникали затруднения при объяснении законов отражения и преломления, а явления дифракции и интерференции совершенно не могли быть объяснены корпускулярной теорией. Поэтому возникла волновая теория света. Эта теория объясняла дифракцию и интерференцию, но возникали трудности с объяснением прямолинейного света. Только в XIX веке Ж. Френель, используя открытия других физиков, сумел объединить уже выведенные принципы в одну теорию, согласно которой свет - поперечная механическая волна. В дальнейшем Максвелл открыл, что свет - один из видов электромагнитного излучения. Но в начале XX века, благодаря открытиям Эйнштейна представления о свете опять изменились. Свет стал пониматься как поток фотонов. Но определенные свойства света прекрасно объяснялись и волновой теорией. Свет обладает как корпускулярными, так и волновыми свойствами. При этом существуют следующие закономерности: чем короче длина волны, тем ярче проявляются корпускулярные свойства, чем больше длина волны, тем ярче проявляются волновые свойства.

    Согласно де Бройлю, с каждым микрообъектом связываются, с одной стороны, корпускулярные характеристики - энергия E и импульс p, а с другой стороны - волновые характеристики - частота и длина волны.

    В 1924 г. французский физик Л. де Бройль выдвинул смелую гипотезу: корпускулярно-волновой дуализм имеет универсальный характер, т.е. все частицы, имеющие конечный импульс Р, обладают волновыми свойствами. Так в физике появилась знаменитая формула де Бройля где m - масса частицы, V - ее скорость, h - постоянная Планка.

    Итак, корпускулярные и волновые свойства микрообъекта являются несовместимыми в отношении их одновременного проявления, однако они в равной мере характеризуют объект, т.е. дополняют друг друга . Эта идея была высказана Н. Бором и положена им в основу важнейшего методологического принципа современной науки, охватывающего в настоящее время не только физические науки, но и все естествознание - принципа дополнительности (1927) . Суть принципа дополнительности по Н. Бору сводится к следующему: как бы далеко не выходили явления за рамки классического физического объяснения, все опытные данные должны описываться при помощи классических понятий. Для полного описания квантово-механических явлений необходимо применять два взаимоисключающих (дополнительных) набора классических понятий, совокупность которых дает наиболее полную информацию об этих явлениях как о целостных.

    Принцип дополнительности, как общий принцип познания может быть сформулирован следующим образом: всякое истинное явление природы не может быть определено однозначно с помощью слов нашего языка и требует для своего определения, по крайней мере, двух взаимоисключающих дополнительных понятий. К числу таких явлений относятся, например, квантовые явления, жизнь, психика и др. Бор, в частности, видел необходимость применения принципа дополнительности в биологии, что обусловлено чрезвычайно сложным строением и функциями живых организмов, которые обеспечивают им практически неисчерпаемые скрытые возможности.