Эксимерный лазер для коррекции зрения. Оборудование для проведения лазерной коррекции зрения. Особенности использования в медицине

В данной статье рассмотрим плюсы эксимерных лазеров. На сегодняшний день медицина обладает широким спектром всевозможного лазерного оборудования для лечения сложных заболеваний в труднодоступных участках человеческого тела. помогают достичь эффекта малоинвазивности и безболезненности, что имеет огромное преимущество перед теми хирургическими вмешательствами, которые производятся вручную при полостных операциях, которые весьма травматичны, чреваты высокими кровопотерями, а также длительной реабилитацией после них.

Что такое лазер?

Лазер - это особый квантовый генератор, излучающий узкий световой пучок. Лазерные приспособления открывают невероятные возможности передач энергий на разные расстояния с высокой скоростью. Обычный же свет, который способен восприниматься человеческим зрением, представляет собой небольшие пучки света, которые распространяются в разные стороны. Если эти пучки сконцентрировать при помощи линзы либо зеркала, получится большой пучок световых частиц, но даже он не может сравниться с лазерным лучом, который состоит из квантовых частиц, что может быть достигнуто только путем активации атомов той среды, которая лежит в основе лазерного излучения.

Разновидности

При помощи колоссальных разработок ученых всего мира эксимерные лазеры сегодня широко используются во многих сферах человеческой деятельности и имеют следующие разновидности:


Происхождение

Данная разновидность представляет собой ультрафиолетовый который широко применяется в области глазной хирургии. При помощи этого устройства врачи осуществляют лазерную коррекцию зрения.

Термин «эксимер» значит «возбужденный димер» и характеризует тип материала, который используется в качестве его рабочего тела. Впервые в СССР подобное устройство было представлено в 1971 году учеными В. А. Даниличевым, Н. Басовым и Ю. М. Поповым в Москве. В качестве рабочего тела такого лазера использовался димер ксенона, который возбуждался пучком электронов с целью получить излучение с определенной длиной волн. Через некоторое время для этого стали применять благородные газы с галогенами, и это было сделано в 1975 году в одной из исследовательских лабораторий США учеными Дж. Хартом и С. Сирлесом.

Люди часто спрашивают, почему для коррекции зрения используется эксимерный лазер.

Его уникальность

Было установлено, что эксимерная молекула производит за счет того, что она находится в возбужденном «притягивающем» состоянии, а также в «отталкивающем». Это действие можно объяснить тем, что ксенон или криптон (благородные газы) имеют высокую инертность и, как правило, никогда не образуют химических соединений. Электрический разряд приводит их в возбужденное состояние, вследствие чего они могут образовать молекулы либо между собой, либо с галогенами, например, хлором или фтором. Появление молекул, находящихся в возбужденном состоянии, создает, как правило, так называемую инверсию населенностей, и такая молекула отдает свою энергию, представляющую собой вынужденное или спонтанное излучение. После этого данная молекула возвращается в основное состояние и распадается на атомы. Устройство эксимерного лазера уникально.

Термин «димер» обычно употребляется тогда, когда между собой соединяются одинаковые атомы, однако в большинстве эксимерных лазеров современности используются соединения благородных газов и галогенов. Тем не менее димерами называют и эти соединения, применяемые для всех лазеров подобной конструкции. Как работает эксимерный лазер? Это мы сейчас рассмотрим.

Принцип действия эксимерного лазера

Данный лазер является основным действующим лицом PRK и LASIK. Рабочее тело его представляют инертный и галогеновый газ. Когда в смесь этих газов проникает высокое напряжение, один атом галогена и одна атом инертного газа соединяются, образуя двухатомную молекулу. Она находится в крайне возбужденном состоянии и через тысячную долю секунды распадается на атомы, что приводит к появлению световой волны в УФ-диапазоне.

Этот принцип действия эксимерного лазера нашел широкое применение в медицине, поскольку ультрафиолетовое излучение воздействует на органические ткани, к примеру, на роговицу, таким образом, что разъединяются связи между молекулами, приводящие к переводу тканей из твердого в газообразное состояние. Этот процесс называется «фотоабляцией».

Диапазон волн

Все существующие модели данного вида функционируют в одном диапазоне длин волн и различаются исключительно по ширине светового пучка, а также по составу рабочего тела. Эксимерный лазер для коррекции зрения применяется чаще всего. Но есть и другие области его использования.

Первые имели диаметр светового пучка, который был равен диаметру поверхности, на которой производилось испарение. Широкий диапазон луча и его неоднородность вызывали такую же неоднородность верхних слоев роговицы, а также повышение температуры на ее поверхности. Этот процесс сопровождался повреждениями и ожогами. Эту ситуацию исправило создание эксимерного лазера. В МНТК «Микрохирургия глаза» используют его очень давно.

Лазеры нового поколения прошли длительный процесс модернизации, в процессе которой был уменьшен диаметр светового пучка, также была создана специальная ротационно-сканирующая система поставки к глазу лазерного излучения. Рассмотрим, как эксимерные лазеры используют врачи.

Применение в медицине

В поперечном разрезе такой лазерный луч выглядит как пятно, перемещающееся по кругу, снимая верхние слои роговицы, а также придавая ей другой радиус кривизны. В зоне абляции температура не поднимается, поскольку воздействие является кратковременным. В результате операции наблюдается ровная и четкая поверхность роговицы. Эксимерный лазер в офтальмологии незаменим.

Хирург, осуществляющий оперативное вмешательство, заранее определяет, какова порция энергии, которая будет подаваться на роговицу, а также на какую глубину будет производиться воздействие эксимерным лазером. Отсюда специалист может заранее планировать ход процесса и предполагать, какой результат будет получен по итогам проведения операции.

Лазерная коррекция зрения

Как работает эксимерный лазер в офтальмологии? В основе популярной сегодня методики лежит так называемое компьютерное перепрофилирование роговицы, являющейся главной оптической линзой человеческого глаза. Эксимерный лазер, которым воздействуют на нее, сглаживает поверхность роговицы, убирая верхние слои и, таким образом, устраняя все имеющиеся на ней дефекты. При этом появляются нормальные условия для получения глазом правильных образов, создавая правильность преломления света. Люди, которым была проведена такая процедура, видят как все, кто имеет изначально хорошее зрение.

Процедура перепрофилирования роговицы не вызывает возникновения на ее поверхности высоких температур, что может оказаться губительным для живых тканей. И, как считает большинство людей, не происходит так называемого выжигания верхних слоев роговицы.

Самое главное преимущество эксимерных лазеров заключается в том, что их использование для коррекции зрения позволяет получить идеальный результат и исправлять практические все существующие аномалии роговицы. Эти устройства являются настолько высокоточными, что позволяют обеспечить «фотохимическую абляцию» верхних слоев.

Например, если данный процесс осуществляется на центральной зоне роговицы, то ее форма становится почти плоской, а это помогает исправить близорукость. Если в процессе коррекции зрения испаряют слои роговицы в зоне периферии, то ее форма становится более округлой, а это, в свою очередь, корректирует дальнозоркость. Астигматизм исправляется посредством дозированного удаления верхних слоев роговицы в различных ее частях. Современные эксимерные лазеры, которые широко используются в рефракционной микрохирургии глаза, гарантируют высокое качество поверхности, которая подвергается фотоабляции.

Особенности использования в медицине

Эксимерные лазеры в том виде, какой они имеют сегодня, появились совсем недавно, но уже сейчас они помогают людям всего мира избавиться от таких проблем со зрением, как близорукость, дальнозоркость, астигматизм. Подобное решение проблемы, впервые за долгие годы создания такого оборудования, отвечает всем требованиям безболезненности, максимальной безопасности и эффективности.

Заболевания глаза, которые лечатся путем применения

Область офтальмохирургии, которая занимается устранением данных аномалий человеческого глаза, называется рефракционной хирургией, а подобные нарушения - аномалиями аметропии и рефракции.

По мнению специалистов, выделяется две разновидности рефракции:


Аметропия, в свою очередь, включает в себя несколько подвидов:

  • миопия (близорукость);
  • астигматизм - получение глазом искаженного изображения, когда роговица имеет неправильную кривизну, и поток световых лучей становится неодинаковым на разных участках ее поверхности;
  • гиперметропия (дальнозоркость).

Астигматизм бывает двух видов - гиперметропическим, который близок к дальнозоркости, миопическим, сходным с близорукостью и смешанным.

Для того чтобы правильно представить суть рефракционных манипуляций, необходимо минимально знать анатомию человеческого глаза. Система оптики глаза состоит из трех основных элементов - роговицы, хрусталика, являющихся светопреломляющими частями, а также сетчатки, которая является световоспринимающей частью. Для того чтобы получаемое изображение становилось четким и резким, сетчатка находится в фокусе шара. Однако если она находится впереди фокуса, а такое бывает при дальнозоркости, либо сзади него, что бывает при близорукости, получаемое изображение становится нечетким и значительно размытым.

У человека оптика глаза может изменяться в течение жизни, в частности с момента рождения и до 16-20 лет она меняется в связи с ростом и увеличение в размерах глазного яблока, а также под воздействием некоторых факторов, которые могут привести к образованию тех или иных аномалий. Таким образом, пациентами хирурга, занимающегося рефракцией глаза, чаще всего становятся люди взрослого возраста.

Противопоказания к процедуре коррекции зрения эксимерным лучом

Коррекция зрения эксимерным лазером показана не всем людям, страдающим нарушениями зрения. Запретом на применение данной процедуры являются:


Возможные осложнение после применения

Все существующие методики лечения эксимерным лазером на сегодняшний день отличаются высокой безопасностью и особой эффективностью. Тем не менее существует ряд осложнений, которые могут возникнуть после хирургического вмешательства с использованием подобных методик. К ним относятся:

  1. Частичное либо неправильное прирастание части роговицы, после чего прирастить эту часть снова не представляется возможности.
  2. Так называемый синдром сухого глаза, когда у пациента возникает покраснение и болезненные ощущения в глазу. Данное осложнение может возникать в случаях, если в процессе коррекции зрения были повреждены нервные окончания, которые отвечают за выработку слезы.
  3. Разнообразные расстройства зрения, к примеру, двоение либо снижение зрения в темноте, нарушение восприятия цветов либо появление светового ореола.
  4. Ослабление либо размягчение роговицы, которое может произойти как через несколько месяцев после оперативного вмешательства, так и через несколько лет.

Эксимерный лазер в дерматологии

Воздействие низкочастотного лазера на кожу крайне положительно. Это происходит благодаря таким эффектам:

  • противовоспалительному;
  • антиоксидантному;
  • обезболивающему;
  • иммуномодулирующему.

То есть имеется определенный биостимулирующий механизм действия лазерного излучения с небольшой мощностью.

Успешно проходит лечение эксимерным лазером витилиго. Пигментные пятна на коже очень быстро сглаживаются.

МГТУ им. Н.Э. Баумана

Учебно-методическое пособие

Эксимерные лазеры

Н.В. Лисицына

Москва 2006

Введение

1. Теоретические основы

1.1 Активная среда

1.1.2 Лазеры на окислах инертных газов

1.1.3 Лазеры на эксимерных молекулах чистых инертных газов

1.1.4 Лазеры на двухатомных галогенах

1.1.5 Лазеры на парах металлов

1.1.6 Охлаждение, вентиляция и очистка рабочего газа

1.2 Накачка

1.2.1 Накачка электронным пучком

1.2.2 Накачка электрическим разрядом

1.2.2.1 Разрядные цепи

1.2.2.2 Накачка быстрым поперечным электрическим разрядом

2.2.3 Накачка электрическим разрядом с предионизацией электронным пучком

1.2.2.4 Накачка двойным электрическим разрядом

1.3 Параметры выходного излучения

2. Коммерческие модели эксимерных лазеров

2.1 Лазер LPXPro 305 фирмы LAMBDA PHYSIK (Германия)

2.2 Лазер eX5 ФИРМЫ gam lasers, inc (сша)

3. Применения

3.1 Фотолизное возбуждение лазерных сред

3.2 Генерация коротковолнового излучения

3.2.1 Фотолитография

3.2.2 Лазерная хирургия. Пример пересчета параметров лазерного излучения

Литература

Введение

Эксимерные лазеры - один из самых интересных видов лазеров. Излучение источников, относящихся к этому виду, в спектральном диапазоне занимает промежуток от 126 нм до 558 нм. Благодаря такой малой длине волны излучение эксимерных лазеров может быть сфокусировано в пятно очень маленького размера. Мощность этих источников достигает единиц кВт. Эксимерные лазеры относятся к импульсным источникам. Частота повторения импульсов может доходить до 500 Гц. Этот вид лазеров имеет очень высокий квантовый выход и, как следствие, достаточно высокий КПД (до 2 - 4%).

Благодаря таким необычным характеристикам, излучение эксимерных лазеров находит применение во многих областях и приложениях. Они используются в клиниках при проведении операций (на радужной оболочке глаза и других), где необходимо выжигание тканей. На основе этих лазеров созданы микрофотолитографические установки для тонкого травления материалов при создании электронных печатных плат. Широкое применение нашли эксимерные лазеры в экспериментальных научных исследованиях.

Однако, все эти замечательные характеристики эксимерных лазеров влекут за собой некоторые трудности при их изготовлении и создании установок на их основе. Например, при столь высокой мощности излучения необходимо препятствовать образованию дуги в активной газовой смеси. Для этого необходимо усложнить механизм накачки с целью сокращения длительности ее импульса. Коротковолновое излучение эксимерных лазеров требует использования специальных материалов и покрытий в конструкциях резонаторов, а также в оптических системах для преобразования их излучения. Поэтому одним из недостатков источников этого вида является высокая, по сравнению с другими видами лазеров, стоимость.

1. Теоретические основы

1.1 Активная среда

Активной средой эксимерного лазера являются молекулы газа. Но, в отличие от лазеров на CO, CO 2 или N 2 , генерация в эксимерных лазерах происходит не на переходах между различными колебательно-вращательными состояниями, а между различными электронными состояниями молекул. Существуют вещества, которые в основном состоянии не могут образовывать молекулы (их частицы в невозбужденном состоянии существуют лишь в мономерной форме). Это происходит, если основное состояние вещества соответствует взаимному отталкиванию атомов, является слабосвязанным, либо связанным, но при наличии больших межъядерных расстояниях (рис.1).

Рисунок 1: а - резко отталкивательная кривая; б - плоская кривая; в - кривая связанного состояния на больших межъядерных расстояниях

Молекулы рабочего вещества эксимерных лазеров грубо можно разделить на два вида: образованные частицами одного и того же вещества и частицами двух различных веществ. В соответствии с этим сами активные среды можно назвать "эксимеры" (excimer, exciteddimer - возбужденный димер) и "эксиплексы" (exciplex, excitedcomplex - возбужденный комплекс).

Процесс получения генерации в эксимерном лазере удобно рассмотреть с помощью рисунка 2, на котором представлены кривые потенциальной энергии для основного и возбужденного состояний двухатомной молекулы А 2 .

Рисунок 2. Энергетические уровни эксимерного лазера.

Поскольку кривая потенциальной энергии возбужденного состояния имеет минимум, молекула А 2 * может существовать. Данная молекула является эксимером. В процессе релаксации возбужденной среды устанавливается определенная траектория потока энергии, которая содержит скачок, преодолеваемый только испусканием излучения. Если в некотором объеме накопить довольно большое количество таких молекул, то на переходе между верхним (связанным) и нижним (свободным) уровнями можно получить генерацию (вынужденное излучение) - связанно-свободный переход.

Этот переход характеризуется следующими важными свойствами:

При переходе молекулы в основное состояние в результате генерации она немедленно диссоциирует;

Не существует четко выраженных вращательно-колебательных переходов, и переход является относительно широкополосным.

Если инверсия населенностей не достигается, то наблюдается флюоресценция.

Если нижнее состояние является слабосвязанным, то молекула в этом состоянии претерпевает быструю диссоциацию либо сама (предиссоциация), либо вследствие первого же столкновения с другой молекулой газовой смеси.

В настоящее время получена лазерная генерация на ряде эксимерных комплексов - квазимолекулах благородных газов, их окислах и галогенидах, а также парах металлических соединений. Длины волн генерации этих активных сред приведены в таблице 1.

Таблица 1

Эксимерные комплексы Квазимолекулы благородных газов Окислыблагородных газов Пары металлических соединений
Активная квазимолекула Xe 2 * Kr 2 * Ar 2 * ArO* KrO* XeO* CdHg*
λ ген, нм 172 145,7 126 558 558 540 470
∆λ, нм 20 13,8 8 25
Р имп, МВт(Р ср, Вт) 75 50
τ, нс 10 10 4-15
Активная квазимолекула XeBr* XeF* ArF* ArCl* XeCl* KrCl* KrF*
λ ген, нм 282 351 193 175 308 220 248
∆λ, нм 1 1,5 1,5 2 2,5 5 4
Р имп, МВт(Р ср, Вт) (100) 3 1000 (0,02) (7) 5(0,05) 1000
τ, нс 20 20 55 10 5 30 55

Для получения квазимолекул благородных газов используются чистые газы, находящиеся под давлением в десятки атмосфер; для получения окислов благородных газов - смесь исходных газов с молекулярным кислородом или соединениями, содержащими кислород, в соотношении 10000: 1 под таким же давлением; для получения галогенидов благородных газов - их смеси с галогенами в соотношении 10000: 1 (для аргона и ксенона) или 10: 1 (для ксенона или криптона) при общем давлении 0,1 - 1 МПа.

1.1.1 Лазеры на галогенидах инертных газов

Рассмотрим наиболее интересный класс эксимерных лазеров, в которых атом инертного газа в возбужденном состоянии соединяется с атомом галогена, что приводит к образованию эксиплекса галогенидов инертных газов. В качестве конкретных примеров можно указать ArF (λ = 193 нм), KrF (λ = 248 нм), XeCl (λ = 309 нм), XeF (λ = 351 нм), которые генерируют все в УФ диапазоне. То, почему галогениды инертных газов легко образуются в возбужденном состоянии, становится ясным, если учесть, что в возбужденном состоянии атомы инертных газов становятся химически сходными с атомами щелочных металлов, которые легко вступают в реакцию с галогенами. Эта аналогия указывает также на то, что в возбужденном состоянии связь имеет ионный характер: в процессе образования связи возбужденный электрон переходит от атома инертного газа к атому галогена. Поэтому подобное связанное состояние также называют состоянием с переносом заряда.

В лазерах на галогенидах инертных газов существенное влияние на состояние плазмы оказывают процессы фотопоглощения. К ним относится фотодиссоциация исходного галогена, из которого образуется галогенид инертного газа F 2 + hν → 2F; фотораспад образованного в плазме отрицательного иона F - + hν → F + e - ; фотоионизация возбужденных атомов и молекул инертного газа Ar * + hν → Ar + + e - ; фотодиссоциация димеров ионов инертного газа Ar 2 + + hν → Ar + + Ar. А также поглощение самими молекулами галогенидов инертных газов.

Фотопоглощение в активной среде лазеров на галогенидах инертных газов можно разделить на линейчатое и широкополосное. Линейчатое поглощение возникает на связанно-связанных переходах, присутствующих в лазерной смеси примесей атомарных и молекулярных газов, а также свободных атомов и радикалов, образующихся под действием разряда либо при разложении примесных молекул, либо за счет эрозии электронов. Показано, что линейчатое поглощение в некоторых случаях может довольно существенно искажать спектр генерации, однако, как правило, не приводит к заметному снижению ее энергии. Широкополосное поглощение обусловлено, главным образом, связанно-свободными переходами, происходящими в процессах типа фотодиссоциации, фотоотлипания и фотоионизации.

Эксимерные лазеры на галогенидах инертных газов обычно накачиваются электрическим разрядом.

Эффективная накачка эксимерных лазеров, т.е. создание разряда оптимального с точки зрения вклада энергии в активную среду, еще не гарантирует получения высоких генерационных характеристик лазера. Не менее важно организовать извлечение из активной среды запасенной в ней световой энергии.

Эксимерный лазер – основное действующее лицо ФРК и ЛАСИКа. Свое название он получил от комбинации двух слов: excited – возбужденный, dimer – двойной. Активное тело таких лазеров состоит из смеси двух газов – инертного и галогенового. При подаче высокого напряжения в смесь газов, атом инертного газа и атом галогена формируют молекулу двухатомного газа. Эта молекула находится в возбужденном и крайне нестабильном состоянии. Через мгновение, порядка тысячных долей секунды, молекула распадается. Распад молекулы приводит к излучению световой волны в ультрафиолетовом диапазоне (чаще 193 нм.).

Принцип воздействия излучения ультрафиолетового диапазона на органическое соединение, в частности на роговичную ткань, заключается в разъединении межмолекулярных связей и, как результат, перевод части ткани из твердого состояния в газообразное (фотоабляция). Первые лазеры имели диаметр пучка равный диаметру испаряемой поверхности, и отличались значительным повреждающим действием на роговицу. Широкий профиль луча, его неоднородность, вызывали неоднородность кривизны поверхности роговицы, достаточно высокий нагрев роговичной ткани (на 15-20˚), что влекло за собой ожоги и помутнения роговицы.

Лазеры нового поколения были модернизированы. Был уменьшен диаметр пучка, а для обработки всей необходимой поверхности роговицы была создана ротационно-сканирующая система подачи лазерного излучения к глазу. На самом деле эта система была создана в конце 50-х годов, и до сих пор с успехом применяется в сканирующих головках самонаведения ракет. Все эксимерные лазеры работают в одном диапазоне длин волн, в импульсном режиме, и различаются только модуляцией лазерного пучка и составом активного тела. Лазерный пучок, в поперечном разрезе представляющий собой прорезь или пятно, перемещается по окружности постепенно снимая слои роговицы и придавая ей новый радиус кривизны. Температура в зоне абляции практически не повышается вследствие кратковременного воздействия. Ровная поверхность роговицы полученная в результате операции, позволяет получить точный и стойкий рефракционный результат.

Поскольку хирургу заранее известно, какова порция световой энергии подаваемой на объект (роговицу) он может рассчитать, на какую глубину будет проведена абляция. И какого результата он добьется в процессе проведения рефракционной операции. И вот, наконец - то, на пороге третьего тысячелетия появился новый метод, позволяющий решить эту проблему - это эксимер-лазерная коррекция, которая избавляет людей от близорукости, астигматизма и дальнозоркости. Лазерная коррекция впервые отвечает всем требованиям человека с "плохим" зрением. Научная обоснованность, безболезненность, максимальная безопасность, стабильность результатов - это те безоговорочные факторы, которые ее характеризуют. Область офтальмохирургии, занимающаяся коррекций этих аномалий, называется рефракционная хирургия, а сами они - аномалии рефракции или аметропии.

Специалисты выделяют два типа рефракции:
- Эмметропия - нормальное зрение;
- Аметропия - аномальное зрение, включающее несколько видов: миопия - близорукость; гиперметропия - дальнозоркость, астигматизм - искажение изображения, когда кривизна роговицы неправильная и ход световых лучей на разных ее участках неодинаков. Астигматизм бывает миопическим (близоруким), гиперметропическим (дальнозорким) и смешанным. Чтобы понять суть рефракционных вмешательств, очень кратко и схематично вспомним анатомическую - физику глаза. Оптическая система глаза состоит из двух структур: светопреломляющая часть - роговица и хрусталик и световоспринимающая часть - сетчатка, расположенная на определенном (фокусном) расстоянии. Для того, чтобы изображение было резким и четким, сетчатка должна находится в фокусе оптической силы шара. В случае, если сетчатка будет находится впереди фокуса, что бывает при дальнозоркости или позади фокуса при близорукости, изображение предметов будет размытым и нечетким. При этом с момента рождения и до 18-20 лет оптика глаза меняется ввиду физиологического роста глазного яблока и под действием факторов, нередко приводящих к формированию тех или иных аномалий рефракции. Поэтому пациентом рефракционного хирурга чаще становится человек, достигший 18-20 лет.

В основе эксимер-лазерной коррекции зрения лежит программа "компьютерного перепрофилирования" поверхности основной оптической линзы глаза человека - роговицы. По индивидуальной программе коррекции холодный луч "выглаживает" роговицу, устраняя все имеющиеся дефекты. При этом формируются нормальные условия для оптимального преломления света и получения неискаженного образа в глазу, как у людей с хорошим зрением. Процесс "перепрофилирования" не сопровождается губительным повышением температуры тканей роговицы, и как многие ошибочно считают ни какого "выжигания" не происходит. И самое главное, эксимер-лазерные технологии позволяют получить настолько "идеальный новый заданный профиль" роговицы, что дало возможность исправлять ими практически все виды и степени аномалий рефракции. Говоря научным языком, эксимерные лазеры - высокоточные системы, обеспечивающие необходимую "фотохимическую абляцию" (испарение) слоев роговицы. Если ткань удаляется в центральной зоне, то роговица становится более плоской, что исправляет близорукость. Если же испарить периферическую часть роговицы, то ее центр станет более "крутым", что позволяет корригировать дальнозоркость. Дозированное удаление в разных меридианах роговицы позволяет исправлять астигматизм. Современные лазеры, используемые в рефракционной хирургии, надежно гарантируют высокое качество "аблируемой" поверхности.


Эксимерные лазеры представляют собой интересный и важный класс молекулярных лазеров на переходах между различными электронными состояниями. Рассмотрим двухатомную

молекулу кривые потенциальной энергии для основного и возбужденного состояний которой приведены на рис. 6.25. Поскольку основное состояние соответствует взаимному отталкиванию атомов, в этом состоянии молекула не существует (т. е. в основном состоянии частицы существуют лишь в мономерной форме А). Однако, поскольку кривая потенциальной энергии возбужденного состояния имеет минимум, молекула может существовать в возбужденном состоянии (т. е. в возбужденном состоянии частицы существуют в димерной форме Такая молекула А называется эксимером (аббревиатура англ. слов - возбужденный димер). Предположим теперь, что в некотором объеме каким-либо образом создано большое число эксимеров. Тогда генерация может быть получена на переходе между верхним (связанным) и нижним (свободным) состояниями (связанно-свободный переход). Соответствующий лазер называется эксимерным. Эти лазеры характеризуются двумя необычными, но важными свойствами благодаря тому, что основное состояние соответствует взаимному отталкиванию атомов. 1) Как только в результате генерации молекула перейдет в основное состояние, она немедленно диссоциирует. Это означает, что нижний лазерный уровень будет всегда пустым. 2) Не существует четко выраженных вращательно-колебательных переходов, и переход является относительно широкополосным Однако следует заметить, что в некоторых эксимерных лазерах кривая потенциальной энергии основного состояния не соответствует чистому взаимному отталкиванию, а обладает неглубоким минимумом. В этом случае переход происходит между верхним связанным состоянием и нижним (слабо) связанным состоянием (связанно-связанный переход). Однако, поскольку основное состояние является лишь слабосвязанным, молекула в этом состоянии претерпевает быструю диссоциацию либо сама (предис-социация), либо вследствие первого же столкновения с другой молекулой газовой смеси.

Рис. 6.25. Энергетические уровни эксимерного лазера.

Рассмотрим теперь наиболее интересный класс эксимерных лазеров, в которых атом инертного газа (например, ) в возбужденном состоянии соединяется с атомом галогена что приводит к образованию эксимера галогенидов инертных газов. В качестве конкретных примеров укажем , которые генерируют все в УФ-диапазоне. То, почему галогениды инертных газов легко образуются в возбужденном состоянии, становится ясным, если учесть, что в возбужденном состоянии атомы инертных газов становятся химически сходными с атомами щелочных металлов, которые, как известно, легко вступают в реакцию с галогенами. Эта аналогия указывает также на то, что в возбужденном состоянии связь имеет ионный характер; в процессе образования связи возбужденный электрон переходит от атома инертного газа к атому галогена. Поэтому подобное связанное состояние также называют состоянием с переносом заряда, Рассмотрим теперь подробнее -лазер, так как он представляет собой один из наиболее важных лазеров данной категории. На рис, 6.26 приведена диаграмма потенциальной энергии молекулы Верхний лазерный уровень является состоянием с переносом заряда и ионной связью, которое при отвечает состоянию положительного иона и состоянию 5 отрицательного иона Поэтому энергия при равна потенциалу ионизации атома криптона минус сродство атома фтора к электрону, При больших межъядерных расстояниях кривая энергии подчиняется закону Кулона. Таким образом, потенциал взаимодействия между двумя ионами простирается на гораздо большее расстояние чем в случае, когда преобладает ковалентное взаимодействие (ср., например, с рис, 6.24), Нижнее состояние имеет ковалентную связь и при отвечает состоянию атома криптона и состоянию атома фтора, Таким образом, в основном состоянии атомные состояния инертного газа и галогена меняются местами. В результате взаимодействия соответствующих орбиталей верхнее и нижнее состояния при малых межъядерных расстояниях расщепляются на состояния и Генерация происходит на переходе поскольку он имеет наибольшее сечение, Заметим, что при переходе излучающий электрон передается от иона иону

Обращаясь к механизмам возбуждения, заметим, что электрическое возбуждение приводит в основном к образованию возбужденных атомов и ионов Обе частицы сразу же приводят к образованию возбужденных молекул . В самом деле, возбужденный атом может реагировать с молекулой в соответствии со следующей реакцией:

Используя рассмотренную выше аналогию между возбужденными атомами инертного газа и атомами щелочных металлов, можно сразу же предположить, что скорость реакции (6.12) будет сравнима со скоростью реакции между (атом щелочного металла, соответствующий и молекулой

Рис. 6.26. Кривые потенциальной энергии, отражающие молекулярную структуру

Ион напротив, реагирует с ионами которые образуются в реакции присоединения электрона с диссоциацией:

Заметим, что для одновременного выполнения законов сохранения энергии и импульса рекомбинация двух ионов должна протекать посредством трехчастичного столкновения:

где М - атом буферного газа (в данном случае это, как правило, гелий). Из-за большого расстояния взаимодействия двух ионов данная реакция также идет с очень большой скоростью, если давление буферного газа достаточно велико (газовая смесь обычно состоит из при давлении около 120 мбар, при давлении 6 мбар и Не при давлении 2400 мбар).

Эксимерные лазеры на галогенидах инертных газов обычно накачиваются электрическим разрядом в соответствии с общей схемой, представленной на рис. 6,21.

Рис. 6.27, Энергия в импульсе, излучаемая ТЕА-лазером с УФ-предыонизацией электрического разряда. В каждом из указанных лазеров использовалась та же лазерная трубка, что и на рис. 6.21, но заполненная соответствующим газом.

Предыонизация обычно достигается, как и на рис. 6,21, излучающими в УФ-диапазоне искровыми разрядами. Поскольку глубина проникновения УФ-излучения в газовую смесь ограничена, для больших установок (поперечные размеры разряда больше 2-3 см) иногда применяют предыонизацию рентгеновским излучением. Для лабораторных устройств и самых крупных установок иногда используют также накачку внешним электронным пучком, Во всех случаях усиление оказывается очень большим, так что в лазерном резонаторе обычно на одном из концов в качестве зеркала устанавливают непросветленный эталон, а на другом конце используют зеркало со 100 %-ным отражателем (например, заднее зеркало на рис. 6.21), Поскольку время жизни верхнего уровня сравнительно невелико, а также чтобы избежать образования дуги, необходимо обеспечить быструю накачку (длительность импульса накачки 10-20 не). В случае, представленном на рис, 6.21, это достигается, как и в азотном лазере, тем, что уменьшают по возможности индуктивность контура и используют

безындукционные конденсаторы, присоединенные к разрядным электродам короткими проводниками. В действительности один и тот же лазер типа изображенного на рис. 6,21 можно использовать как TEA -лазер, азотный лазер или эксимерный лазер просто заменой газовой смеси, На рис. 6.27 показаны полученные таким способом выходные энергии одиночного импульса для различных лазеров. Имеются эксимерные лазеры с частотой повторения примерно до 500 Гц и средней выходной мощностью вплоть до 100 Вт, В настоящее время создаются также более крупные установки со средней мощностью более 1 кВт, Благодаря большому квантовому выходу (см. рис, 6,26) и высокой эффективности процессов накачки КПД этих лазеров обычно довольно высок (2-4 %).

Эксимерные лазеры используются для очень точного травления различных материалов в приложениях, связанных с электронными печатными схемами, а также для выжигания тканей в биологии и медицине (например, радиальная кератомия радужной оболочки глаза). Эксимерные лазеры также широко используются в научных исследованиях и, по-видимому, найдут многочисленные применения там, где требуется источник мощного УФ-излучения с высоким КПД (например, в фотохимии).


Работающий на электронных переходах эксимерных молекул (молекул, существующих только в электронно-возбуждённых состояниях). Зависимость потенц. энергии взаимодействия атомов эксимерной молекулы, находящейся в основном электронном состоянии, от межъядерного расстояния является монотонно спадающей ф-цией, что отвечает отталкиванию ядер. Для возбуждённого электронного состояния, являющегося верх, уровнем лазерного перехода, такая зависимость имеет минимум, определяющий возможность существования самой эксимерной молекулы (рис.). Время жизни возбуждённой эксимерной молекулы ограничено

Зависимость энергии эсимерной молекулы от расстояния R между составляющими её атомами X и Y; верхняя кривая - для верхнего лазерного уровня, нижняя кривая-для нижнего лазерного уровня. Значения соответствуют центру линии усиления активной среды, её красной и фиолетовой границам. временем её радиац. распада. Поскольку ниж. состояние лазерного перехода в Э. л. опустошается в результате разлёта атомов эксимерной молекулы, характерное время к-рого (10 -13 - 10 -12 с) значительно меньше времени радиац. опустошения верх, состояния лазерного перехода, газ, содержащий эксимерные молекулы, является активной средой с усилением на переходах между возбуждёнными связанными и основным разлётным термами эксимерной молекулы.

Основу активной среды Э. л. составляют обычно двухатомные эксимерные молекулы - короткоживущие соединения атомов инертных газов друг с другом, с галогенами или с кислородом. Длина волны излучения Э. л. лежит в видимой или ближней УФ-области спектра. Ширина линии усиления лазерного перехода Э. л. аномально велика, что связано с разлётным характером нижнего терма перехода. Характерные значения параметров лазерных переходов для наиб, распространённых Э. л. представлены в таблице.

Параметры эксимерных лазеров

Оптимальные параметры активной среды Э. л. соответствуют оптимальным условиям образования эксимерных молекул. Наиб, благоприятные условия для образования димеров инертных газовсоответствуют диапазону давлений 10-30 атм, когда происходит интенсивное образование таких молекул при тройных столкновениях с участием возбуждённых атомов:


При столь высоких давлениях наиболее эфф. способ введения энергии накачки в активную среду лазера связан с пропусканием через газ пучка быстрых электронов, к-рые теряют энергию преим. на ионизацию атомов газа. Конверсия атомных ионов в молекулярные и последующая диссоциативная рекомбинация молекулярных ионов сопровождающаяся образованием возбуждённых атомов инертного газа, обеспечивают возможность эфф. преобразования энергии пучка быстрых электронов в энергию эксимерных молекул Лазеры на димерах инертных газов характеризуются кпд ~1%. Осн. недостатком лазеров данного типа является чрезвычайно высокое значение уд. порогового энерговклада, что связано с малой длиной волны лазерного перехода и значит, шириной линии усиления. Это накладывает высокие требования на характеристики электронного пучка, используемого в качестве источника накачки лазера, и ограничивает значения выходной энергии лазерного излучения на уровне долей Дж (в импульсе) при частоте повторения импульсов не выше неск. Гц. Дальнейшее увеличение выходных характеристик лазеров на димерах инертных газов зависит от развития техники электронных ускорителей с длительностью импульса электронного пучка порядка десятков не и энергией пучка ~кДж.

Существенно более высокими выходными характеристиками отличаются Э. л. на моногалогенидах инертных газов RX*, где X - атом галогена. Молекулы этого типа эффективно образуются при парных соударениях, напр.или

Указанные процессы протекают с достаточной интенсивностью уже при давлениях порядка атмосферного, поэтому проблема введения энергии в активную среду таких лазеров оказывается технически значительно менее сложной, чем в случае лазеров на димерах инертных газов. Активная среда Э. л. на моногалогенидах инертных газов состоит из одного или неск. инертных газов при давлении порядка атмосферного и нек-рого кол-ва (~10 -2 атм) га-логеносодержаших молекул. Для возбуждения лазера применяется либо пучок быстрых электронов, либо импульсный электрич. разряд. При использовании пучка быстрых электронов выходная энергия лазерного излучения достигает значений ~ 10 3 Дж при кпд на уровне неск. процентов и частоте повторения импульсов значительно ниже 1 Гц. В случае использования электрич. разряда выходная энергия лазерного излучения в импульсе не превышает долей Дж, что связано с трудностью формирования однородного по объёму разряда в значит, объёме при атм. давлении за время ~ 10 нс. Однако при применении электрич. разряда достигается высокая частота повторения импульсов (до неск. кГц), что открывает возможности широкого практич. использования лазеров данного типа. Наиб. широкое распространение среди Э. л. получил лазер на XeCl, что связано с относительной простотой реализации работы в режиме высокой частоты повторения импульсов. Cp. выходная мощность этого лазера достигает уровня 1 кВт.

Наряду с высокими энергетич. характеристиками важной привлекательной особенностью Э. л. является чрезвычайно высокое значение ширины линии усиления активного перехода (табл.). Это открывает возможность создания мощных лазеров УФ- и видимого диапазонов с плавной перестройкой длины волны в достаточно широкой области спектра. Указанная задача решается с помощью инжекционной схемы возбуждения лазера, включающей в себя маломощный генератор лазерного излучения с длиной волны, перестраиваемой в пределах ширины линии усиления активной среды Э. л., и широкополосный усилитель. Эта схема позволяет получить лазерное излучение с шириной линии ~ 10 -3 HM, перестраиваемое по длине волны в диапазоне шириной ~ 10 HM и более.

Э. л. широко используются благодаря своим высоким энергетич. характеристикам, малой длине волны и возможности её плавной перестройки в довольно широком диапазоне. Мощные моноимпульсные Э. л., возбуждаемые электронными пучками, применяются в установках по исследованию лазерного нагрева мишеней с целью осуществления термоядерных реакций (напр., KrF-лазер сHM, выходной энергией в импульсе до 100 кДж, длительностью импульса ~ 1 не). Лазеры с высокой частотой повторения импульсов, возбуждаемые импульсным газовым разрядом, используются в технол. целях при обработке изделий микроэлектроники, в медицине, в экспериментах по лазерному разделению изотопов, при зондировании атмосферы в целях контроля её загрязнения, в фотохимии и в эксперим. физике в качестве интенсивного источника монохроматич. излучения УФ- или видимого диапазона.

Лит.: Эксимерные лазеры, под ред. Ч. Роудза, пер. с англ., M., 1981; ЕлецкийА. В.. Смирнов Б. M., Физические процессы в газовых лазерах, M.. 1985. А. В. Елецкий .