Действия с векторами в пространстве. Глава I. Векторная алгебра. Связь вектора с прямоугольной декартовой системой координат в пространстве

Стандартное определение: «Вектор - это направленный отрезок». Обычно этим и ограничиваются знания выпускника о векторах. Кому нужны какие-то «направленные отрезки»?

А в самом деле, что такое векторы и зачем они?
Прогноз погоды. «Ветер северо-западный, скорость 18 метров в секунду». Согласитесь, имеет значение и направление ветра (откуда он дует), и модуль (то есть абсолютная величина) его скорости.

Величины, не имеющие направления, называются скалярными. Масса, работа, электрический заряд никуда не направлены. Они характеризуются лишь числовым значением - «сколько килограмм» или «сколько джоулей».

Физические величины, имеющие не только абсолютное значение, но и направление, называются векторными.

Скорость, сила, ускорение - векторы. Для них важно «сколько» и важно «куда». Например, ускорение свободного падения направлено к поверхности Земли, а величина его равна 9,8 м/с 2 . Импульс, напряженность электрического поля, индукция магнитного поля - тоже векторные величины.

Вы помните, что физические величины обозначают буквами, латинскими или греческими. Стрелочка над буквой показывает, что величина является векторной:

Вот другой пример.
Автомобиль движется из A в B . Конечный результат - его перемещение из точки A в точку B , то есть перемещение на вектор .

Теперь понятно, почему вектор - это направленный отрезок. Обратите внимание, конец вектора - там, где стрелочка. Длиной вектора называется длина этого отрезка. Обозначается: или

До сих пор мы работали со скалярными величинами, по правилам арифметики и элементарной алгебры. Векторы - новое понятие. Это другой класс математических объектов. Для них свои правила.

Когда-то мы и о числах ничего не знали. Знакомство с ними началось в младших классах. Оказалось, что числа можно сравнивать друг с другом, складывать, вычитать, умножать и делить. Мы узнали, что есть число единица и число ноль.
Теперь мы знакомимся с векторами.

Понятия «больше» и «меньше» для векторов не существует - ведь направления их могут быть разными. Сравнивать можно только длины векторов.

А вот понятие равенства для векторов есть.
Равными называются векторы, имеющие одинаковые длины и одинаковое направление. Это значит, что вектор можно перенести параллельно себе в любую точку плоскости.
Единичным называется вектор, длина которого равна 1 . Нулевым - вектор, длина которого равна нулю, то есть его начало совпадает с концом.

Удобнее всего работать с векторами в прямоугольной системе координат - той самой, в которой рисуем графики функций. Каждой точке в системе координат соответствуют два числа - ее координаты по x и y , абсцисса и ордината.
Вектор также задается двумя координатами:

Здесь в скобках записаны координаты вектора - по x и по y .
Находятся они просто: координата конца вектора минус координата его начала.

Если координаты вектора заданы, его длина находится по формуле

Сложение векторов

Для сложения векторов есть два способа.

1 . Правило параллелограмма. Чтобы сложить векторы и , помещаем начала обоих в одну точку. Достраиваем до параллелограмма и из той же точки проводим диагональ параллелограмма. Это и будет сумма векторов и .

Помните басню про лебедя, рака и щуку? Они очень старались, но так и не сдвинули воз с места. Ведь векторная сумма сил, приложенных ими к возу, была равна нулю.

2 . Второй способ сложения векторов - правило треугольника. Возьмем те же векторы и . К концу первого вектора пристроим начало второго. Теперь соединим начало первого и конец второго. Это и есть сумма векторов и .

По тому же правилу можно сложить и несколько векторов. Пристраиваем их один за другим, а затем соединяем начало первого с концом последнего.

Представьте, что вы идете из пункта А в пункт В , из В в С , из С в D , затем в Е и в F . Конечный результат этих действий - перемещение из А в F .

При сложении векторов и получаем:

Вычитание векторов

Вектор направлен противоположно вектору . Длины векторов и равны.

Теперь понятно, что такое вычитание векторов. Разность векторов и - это сумма вектора и вектора .

Умножение вектора на число

При умножении вектора на число k получается вектор, длина которого в k раз отличается от длины . Он сонаправлен с вектором , если k больше нуля, и направлен противоположно , если k меньше нуля.

Скалярное произведение векторов

Векторы можно умножать не только на числа, но и друг на друга.

Скалярным произведением векторов называется произведение длин векторов на косинус угла между ними.

Обратите внимание - перемножили два вектора, а получился скаляр, то есть число. Например, в физике механическая работа равна скалярному произведению двух векторов - силы и перемещения:

Если векторы перпендикулярны, их скалярное произведение равно нулю.
А вот так скалярное произведение выражается через координаты векторов и :

Из формулы для скалярного произведения можно найти угол между векторами:

Эта формула особенно удобна в стереометрии. Например, в задаче 14 Профильного ЕГЭ по математике нужно найти угол между скрещивающимися прямыми или между прямой и плоскостью. Часто задача 14 решается в несколько раз быстрее, чем классическим.

В школьной программе по математике изучают только скалярное произведение векторов.
Оказывается, кроме скалярного, есть еще и векторное произведение, когда в результате умножения двух векторов получается вектор. Кто сдает ЕГЭ по физике , знает, что такое сила Лоренца и сила Ампера. В формулы для нахождения этих сил входят именно векторные произведения.

Векторы - полезнейший математический инструмент. В этом вы убедитесь на первом курсе.

Лекция 3. Векторы. Системы линейных уравнений.

Векторы

Цель изучения темы состоит в обобщении понятия вектора, с которым студенты знакомы по школьной программе и расширение ее систематического кругозора.

Векторы на плоскости и в пространстве.

Вектор – это направленный отрезок . Точка А – начало вектора, точка В – конец вектора (рис. 3.1.1). Можно использовать обозначение .

Длиной (модулем) вектора называется число, равное длине вектора. Обозначается модуль вектора символом или . Если модуль вектора , вектор называется нулевым ; направление нулевого вектора произвольно.

Два вектора называются коллинеарными , если они параллельны одной прямой (или лежат на одной прямой), в этом случае пишут . Нулевой вектор коллинеарен любому вектору.

Два вектора равны , то есть , если выполняется три условия: ; и и одинаково направлены.

Произведением вектора ā на число (скаляр) λ называется вектор , удовлетворяющий следующим условиям: , векторы и сонаправлены, если и направлены в противоположные стороны, если . Если , вектор называется противоположным вектору .

Таким образом, условие является достаточным для коллинеарности вектором и ;

Сложение векторов. Суммой двух векторов и называется вектор , начало которого совпадает с началом вектора , а конец – с концом вектора при условии, что начало вектора совпадает с концом вектора (правило треугольника) (см. рис. 3.1.2).

Так как вектор , то для получения суммы двух векторов можно использовать правило параллелограмма : суммой двух векторов является вектор-диагональ параллелограмма, построенного на векторах и , выходящий их общего начала обоих векторов-слагаемых.

Сумма нескольких векторов находится по правилу многоугольника : чтобы найти сумму нескольких векторов , нужно последовательно совместить начало следующего вектора-слагаемого с концом предыдущего; тогда вектор, проведенный из начала первого вектора в конец последнего называется суммой всех данных векторов (рис. 3.1.3).

Разностью двух векторов называется сумма . Если вектор , то по аналогии с суммой двух векторов этот вектор является диагональю параллелепипеда, построенного на трех векторах как на сторонах (рис. 3.1.4).

Рассмотрим вектор в плоскости. Перенесем в начало координат системы хОу .

Получим вектор . Координатами вектора называются координаты точки М (х ;у ). Введем на осях координат векторы i и j – единичной длины (рис. 3.1.5).

Очевидно, или или . Если вектор рассматривается в трехмерном пространстве, где точка М характеризуется тремя координатами, то есть M (x,y,z ) , то вектор можно представить в виде:


xi yj zk , (3.1.1)

где i, j, k – единичные векторы, лежащие на осях координат. Пусть , . Найдем сумму и разность этих векторов:

Сложение векторов и умножение вектора на скаляр подчиняется следующим свойствам:

Доказательства вытекают на основании (3.1.2).


Определение. Скалярным произведением векторов и называется число равно произведению модулей этих векторов на косинус угла φ между ними, то есть . (3.1.3)

Из (3.1.3) вытекают свойства скалярного произведения:

4) если , то .

Используя свойства скалярного произведения, можно найти скалярное произведение двух векторов в координатной форме. Если , , то ; если - условие перпендикулярности векторов.

Если векторы коллинеарны, то есть , то - условие коллинеарности векторов.

Понятие n -мерного вектора. Векторное пространство. Линейная комбинация и линейная зависимость векторов.

Понятие вектора можно обобщить.

Определение. n -мерным вектором называется упорядоченная совокупность n действительных чисел, записываемых в виде Х=(х 1 , х 2 ,…, х n) , х i – компоненты вектора Х .

Понятие n -мерного вектора широко используется в экономике. Например, некоторый набор товаров можно охарактеризовать вектором , а соответствующие цены – вектором .

Два n -мерных вектора равны тогда и только тогда, когда равны их соответствующие компоненты: , .

По аналогии с геометрическими векторами вводятся: сумма векторов с компонентами , ; разность векторов с компонентами , , с теми же свойствами.

Скалярное произведение n -мерных векторов:

Если X - набор товаров, а Y - соответствует ценам за единицу каждого товара, то стоимость всем товаров:

Определение. Множество векторов с действительными компонентами, в котором определены операции сложения (вычитания) и умножения вектора на скаляр, удовлетворяющего приведенным выше свойствам называется векторным пространством.


Определение. Вектор называется линейной комбинацией векторов векторного пространства, если

, (3.1.4)

где - любые действительные числа.

Определение. Векторы называются линейно зависимыми, если существуют такие числа , не равные одновременно нулю, что линейная комбинация .

В противном случае векторы () называются линейно независимыми.

Если векторы линейно зависимы, то хотя бы один из них линейно выражается через остальные. Покажем это. Пусть векторы () линейно зависимы, то естьn), следовательно

Решив систему любым методом (например, методом Крамера), получим ее решение: , , . Разложение вектора по базису имеет вид .

Вектор это направленный прямолинейный отрезок, то есть отрезок, имеющий определенную длину и определенное направление. Пусть точка А – начало вектора, а точка B – его конец, тогда вектор обозначается символом или . Вектор называется противоположным вектору и может быть обозначен .

Сформулируем ряд базовых определений.

Длиной или модулем вектора называется длина отрезка и обозначается . Вектор нулевой длины (его суть - точка) называется нулевым и направления не имеет. Вектор единичной длины, называется единичным . Единичный вектор, направление которого совпадает с направлением вектора , называется ортом вектора .

Векторы называются коллинеарными , если они лежат на одной прямой или на параллельных прямых, записывают . Коллинеарные векторы могут иметь совпадающие или противоположные направления. Нулевой вектор считают коллинеарным любому вектору.

Векторы называются равными , если они коллинеарны, одинаково направлены и имеют одинаковые длины.

Три вектора в пространстве называются компланарными , если они лежат в одной плоскости или на параллельных плоскостях. Если среди трех векторов хотя бы один нулевой или два любые коллинеарны, то такие векторы компланарны.

Рассмотрим в пространстве прямоугольную систему координат 0xyz . Выделим на осях координат 0x , 0y , 0z единичные векторы (орты) и обозначим их через соответственно. Выберем произвольный вектор пространства и совместим его начало с началом координат. Спроектируем вектор на координатные оси и обозначим проекции через a x , a y , a z соответственно. Тогда нетрудно показать, что

. (2.25)

Эта формула является основной в векторном исчислении и называется разложением вектора по ортам координатных осей . Числа a x , a y , a z называются координатами вектора . Таким образом, координаты вектора являются его проекциями на оси координат. Векторное равенство (2.25) часто записывают в виде

Мы будем использовать обозначение вектора в фигурных скобках, чтобы визуально легче различать координаты вектора и координаты точки. С использованием формулы длины отрезка, известной из школьной геометрии, можно найти выражение для вычисления модуля вектора :

, (2.26)

то есть модуль вектора равен корню квадратному из суммы квадратов его координат.

Обозначим углы между вектором и осями координат через α, β, γ соответственно. Косинусы этих углов называются для вектора направляющими , и для них выполняется соотношение: Верность данного равенства можно показать с помощью свойства проекции вектора на ось, которое будет рассмотрено в нижеследующем пункте 4.

Пусть в трехмерном пространстве заданы векторы своими координатами. Имеют место следующие операции над ними: линейные (сложение, вычитание, умножение на число и проектирование вектора на ось или другой вектор); не линейные – различные произведения векторов (скалярное, векторное, смешанное).

1. Сложение двух векторов производится покоординатно, то есть если

Данная формула имеет место для произвольного конечного числа слагаемых.

Геометрически два вектора складываются по двум правилам:

а) правило треугольника – результирующий вектор суммы двух векторов соединяет начало первого из них с концом второго при условии, что начало второго совпадает с концом первого вектора; для суммы векторов – результирующий вектор суммы соединяет начало первого из них с концом последнего вектора-слагаемого при условии, что начало последующего слагаемого совпадает с концом предыдущего;

б) правило параллелограмма (для двух векторов) – параллелограмм строится на векторах-слагаемых как на сторонах, приведенных к одному началу; диагональ параллелограмма исходящая из их общего начала, является суммой векторов.

2. Вычитание двух векторов производится покоординатно, аналогично сложению, то есть если , то

Геометрически два вектора складываются по уже упомянутому правилу параллелограмма с учетом того, что разностью векторов является диагональ, соединяющая концы векторов, причем результирующий вектор направлен из конца вычитаемого в конец уменьшаемого вектора.

Важным следствием вычитания векторов является тот факт, что если известны координаты начала и конца вектора, то для вычисления координат вектора необходимо из координат его конца вычесть координаты его начала . Действительно, любой вектор пространства может быть представлен в виде разности двух векторов, исходящих из начала координат: . Координаты векторов и совпадают с координатами точек А и В , так как начало координат О (0;0;0). Таким образом, по правилу вычитания векторов следует произвести вычитание координат точки А из координат точки В .

3. У множение вектора на число λ покоординатно: .

При λ> 0 – вектор сонаправлен ; λ< 0 – вектор противоположно направлен ; | λ|> 1 – длина вектора увеличивается в λ раз; | λ|< 1 – длина вектора уменьшается в λ раз.

4. Пусть в пространстве задана направленная прямая (ось l ), вектор задан координатами конца и начала. Обозначим проекции точек A и B на ось l соответственно через A и B .

Проекцией вектора на ось l называется длина вектора , взятая со знаком «+», если вектор и ось l сонаправлены, и со знаком «–», если и l противоположно направлены .

Если в качестве оси l взять некоторый другой вектор , то получим проекцию вектора на векто р .

Рассмотрим некоторые основные свойства проекций:

1)проекция вектора на ось l равна произведению модуля вектора на косинус угла между вектором и осью, то есть ;

2.)проекция вектора на ось положительна (отрицательна), если вектор образует с осью острый (тупой) угол, и равна нулю, если этот угол – прямой;

3)проекция суммы нескольких векторов на одну и ту же ось равна сумме проекций на эту ось.

Сформулируем определения и теоремы о произведениях векторов, представляющих нелинейные операции над векторами.

5. Скалярным произведением векторов и называется число (скаляр), равное произведению длин этих векторов на косинус угла φ между ними, то есть

. (2.27)

Очевидно, что скалярный квадрат любого ненулевого вектора равен квадрату его длины, так как в этом случае угол , поэтому его косинус (в 2.27) равен 1.

Теорема 2.2. Необходимым и достаточным условием перпендикулярности двух векторов является равенство нулю их скалярного произведения

Следствие. Попарные скалярные произведения единичных орт равны нулю, то есть

Теорема 2.3. Скалярное произведение двух векторов , заданных своими координатами, равно сумме произведений их одноименных координат, то есть

(2.28)

С помощью скалярного произведения векторов можно вычислить угол между ними. Если заданы два ненулевых вектора своими координатами , то косинус угла φ между ними:

(2.29)

Отсюда следует условие перпендикулярности ненулевых векторов и :

(2.30)

Нахождение проекции вектора на направление, заданное вектором , может осуществляться по формуле

(2.31)

С помощью скалярного произведения векторов находят работу постоянной силы на прямолинейном участке пути.

Предположим, что под действием постоянной силы материальная точка перемещается прямолинейно из положения А в положение B. Вектор силы образует угол φ с вектором перемещения (рис. 2.14). Физика утверждает, что работа силы при перемещении равна .

Следовательно, работа постоянной силы при прямолинейном перемещении точки ее приложения равна скалярному произведению вектора силы на вектор перемещения.

Пример 2.9. С помощью скалярного произведения векторов найти угол при вершине A параллелограмма ABCD , постро енного на векторах

Решение. Вычислим модули векторов и их скалярное произведение по теореме (2.3):

Отсюда согласно формуле (2.29) получим косинус искомого угла


Пример 2.10. Затраты сырьевых и материальных ресурсов, используемых на производство одной тонны творога, заданы в таблице 2.2 (руб.).

Какова общая цена этих ресурсов, затрачиваемых на изготовление одной тонны творога?

Таблица 2.2

Решение . Введем в рассмотрение два вектора: вектор затрат ресурсов на тонну продукции и вектор цены единицы соответствующего ресурса .

Тогда . Общая цена ресурсов , что представляет собой скалярное произведение векторов . Вычислим его по формуле (2.28) согласно теореме 2.3:

Таким образом, общая цена затрат на производство одной тонны творога составляет 279 541,5 рублей

Примечание . Действия с векторами, осуществленные в примере 2.10, можно выполнить на персональном компьютере. Для нахождения скалярного произведения векторов в MS Excel используют функцию СУММПРОИЗВ(), где в качестве аргументов указываются адреса диапазонов элементов матриц, сумму произведений которых необходимо найти. В MathCAD скалярное произведение двух векторов выполняется при помощи соответствующего оператора панели инструментов Matrix

Пример 2.11. Вычислить работу, произведенную силой , если точка ее приложения перемещается прямолинейно из положения A (2;4;6) в положение A (4;2;7). Под каким углом к AB направлена сила ?

Решение. Находим вектор перемещения, вычитая из координат его конца координаты начала

. По формуле (2.28) (единиц работы).

Угол φ между и находим по формуле (2.29), то есть

6. Три некомпланарных вектора , взятые в указанном порядке, образуют правую тройку , если при наблюдении из конца третьего вектора кратчайший поворот от первого вектора ко второму вектору совершается против часовой стрелки, и левую , если по часовой стрелке.

Векторным произведением вектора на вектор называется вектор , удовлетворяющий следующим условиям:

перпендикулярен векторам и ;

– имеет длину, равную , где φ – угол, образованный векторами и ;

– векторы образуют правую тройку (рис. 2.15).

Теорема 2.4. Необходимым и достаточным условием коллинеарности двух векторов является равенство нулю их векторного произведения

Теорема 2.5. Векторное произведение векторов , заданных своими координатами, равно определителю третьего порядка вида

(2.32)

Примечание. Определитель (2.25) раскладывается по свойству 7 определителей

Следствие 1. Необходимым и достаточным условием коллинеарности двух векторов является пропорциональность их соответствующих координат

Следствие 2. Векторные произведения единичных орт равны

Следствие 3. Векторный квадрат любого вектора равен нулю

Геометрическая интерпретация векторного произведения состоит в том, что длина результирующего вектора численно равна площади S параллелограмма, построенного на векторах–сомножителях как на сторонах, приведенных к одному началу. Действительно, согласно определению, модуль векторного произведения векторов равен . С другой стороны, площадь параллелограмма, построенного на векторах и , также равна . Следовательно,

. (2.33)


Также с помощью векторного произведения можно определить момент силы относительно точки и линейную скорость вращения.

Пусть в точке A приложена сила и пусть O – некоторая точка пространства (рис. 2.16). Из курса физики известно, что моментом силы относительно точки O называется вектор , который проходит через точку O и удовлетворяет следующим условиям:

Перпендикулярен плоскости, проходящей через точки O , A , B ;

Его модуль численно равен произведению силы на плечо .

- образует правую тройку с векторами и .

Следовательно, момент силы относительно точки O представляет собой векторное произведение

. (2.34)

Линейная скорость точки М твердого тела, вращающегося с угловой скоростью вокруг неподвижной оси, определяется формулой Эйлера , O – некоторая неподвижная

точка оси (рис. 2.17).


Пример 2.12. С помощью векторного произведения найти площадь треугольника ABC , построенного на векторах , приведенных к одному началу.

Существует два способа решения задач по стереометрии

Первый - классический - требует отличного знания аксиом и теорем стереометрии, логики, умения построить чертеж и свести объемную задачу к планиметрической. Способ хорош тем, что развивает мозги и пространственное воображение.

Другой метод - применение векторов и координат. Это простые формулы, алгоритмы и правила. Он очень удобен, особенно когда времени до экзамена мало, а решить задачу хочется.

Если вы освоили - то и с векторами в пространстве разберетесь. Многие понятия окажутся знакомыми.

Система координат в пространстве

Выберем начало координат. Проведем три взаимно перпендикулярные оси X, Y и Z. Зададим удобный масштаб.

Получилась система координат в трехмерном пространстве. Теперь каждая его точка характеризуется тремя числами - координатами по X, Y и Z. Например, запись M(−1; 3; 2) означает, что координата точки M по X (абсцисса) равна −1, координата по Y (ордината) равна 3, а координата по Z (аппликата) равна 2.

Векторы в пространстве определяются так же, как и на плоскости. Это направленные отрезки, имеющие начало и конец. Только в пространстве вектор задается тремя координатами x, y и z :

Как найти координаты вектора? Как и на плоскости - из координаты конца вычитаем координату начала.


Длина вектора в пространстве – это расстояние между точками A и B. Находится как корень квадратный из суммы квадратов координат вектора.

Пусть точка M – середина отрезка AB. Ее координаты находятся по формуле:

Для сложения векторов применяем уже знакомые правило треугольника и правило параллелограмма

Сумма векторов, их разность, произведение вектора на число и скалярное произведение векторов определяются так же, как и на плоскости. Только координат не две, а три. Возьмем векторы и .

Сумма векторов:

Разность векторов:

Произведение вектора на число:

Скалярное произведение векторов:

Косинус угла между векторами:

Последняя формула удобна для нахождения угла между прямыми в пространстве. Особенно если эти прямые – скрещиваются. Напомним, что так называются прямые, которые не параллельны и не пересекаются. Они лежат в параллельных плоскостях.

1. В кубе ABCDA 1 B 1 C 1 D 1 точки E и K - середины ребер соответственно A 1 B 1 и B 1 C 1 . Найдите косинус угла между прямыми AE и BK.

Если вам достался куб - значит, повезло. Он отлично вписывается в прямоугольную систему координат. Строим чертеж:

Длина ребра куба не дана. Какой бы она ни была, угол между AE и BK от нее не зависит. Поэтому возьмем единичный куб, все ребра которого равны 1.

Прямые AE и BK - скрещиваются. Найдем угол между векторами и . Для этого нужны их координаты.

Запишем координаты векторов:

и найдем косинус угла между векторами и :

2. В правильной четырехугольной пирамиде SABCD, все ребра которой равны 1, точки E, K - середины ребер SB и SC соответственно. Найдите косинус угла между прямыми AE и BK.

Лучше всего выбрать начало координат в центре основания пирамиды, а оси X и Y сделать параллельными сторонам основания.

Координаты точек A, B и C найти легко:

Из прямоугольного треугольника AOS найдем

Координаты вершины пирамиды:

Точка E - середина SB, а K - середина SC. Воспользуемся формулой для координат середины отрезка и найдем координаты точек E и K.

Найдем координаты векторов и

и угол между ними:

Покажем теперь, как вписать систему координат в треугольную призму:

3. В правильной треугольной призме ABCA 1 B 1 C 1 , все ребра которой равны 1, точка D - середина ребра A 1 B 1 . Найдите косинус угла между прямыми AD и BC 1

Пусть точка A - начало координат. Возьмем ось X параллельно стороне BC, а ось Y перпендикулярно ей. Другими словами, на оси Y будет лежать отрезок AH, являющийся высотой треугольника ABC. Нарисуем отдельно нижнее основание призмы.

Запишем координаты точек:

Точка D - середина A 1 B 1 . Значит, пользуемся формулами для координат середины
отрезка.

Найдем координаты векторов и , а затем угол между ними:

Смотрите, как легко с помощью векторов и координат найти угол между прямыми. А если требуется найти угол между плоскостями или между прямой и плоскостью? Для решения подобных задач нам понадобится уравнение плоскости в пространстве.

Плоскость в пространстве задается уравнением:

Здесь числа A, B и C - координаты вектора, перпендикулярного этой плоскости. Его называют нормалью к плоскости.

Вместо x, y и z можно подставить в уравнение координаты любой точки, принадлежащей данной плоскости. Получится верное равенство.

Плоскость в пространстве можно провести через любые три точки, не лежащие на одной прямой. Поэтому для того, чтобы написать уравнение плоскости, берем координаты трех принадлежащих ей точек. Подставляем их по очереди в уравнение плоскости. Решаем полученную систему.

Покажем, как это делается.

Напишем уравнение плоскости, проходящей через точки M (1; 0; 1), N (2; −2; 0) и K (4; 1; 2).

Уравнение плоскости выглядит так:

Подставим в него по очереди координаты точек M, N и K.

Для точки M:

То есть A + C + D = 0.

Для точки N:

Аналогично для точки K:

Получили систему из трех уравнений:

В ней четыре неизвестных: A, B, C и D. Поэтому одну из них мы выберем сами, а другие выразим через нее. Правило простое - вместо одной из переменных можно взять любое число, не равное нулю.

Пусть, например, D = −2. Тогда:

Выразим C и B через A и подставим в третье уравнение:

Решив систему, получим:

Уравнение плоскости MNK имеет вид:

Умножим обе части уравнения на −3. Тогда коэффициенты станут целыми:

Вектор - это нормаль к плоскости MNK.

Уравнение плоскости, проходящей через заданную точку имеет вид:

Угол между плоскостями равен углу между нормалями к этим плоскостям:

Не правда ли, знакомая формула? Скалярное произведение нормалей поделили на произведение их длин.

Заметим, что при пересечении двух плоскостей вообще-то образуется четыре угла.

Мы берем меньший из них. Поэтому в формуле стоит модуль скалярного произведения - чтобы косинус угла был неотрицателен.

4. В кубе ABCDA 1 B 1 C 1 D 1 точки E и F - середины ребер соответственно A 1 B 1 и A 1 D 1 . Найдите тангенс угла между плоскостями AEF и BDD 1 .

Строим чертеж. Видно, что плоскости AEF и BDD 1 пересекаются где-то вне куба. В классическом решении пришлось бы строить линию их пересечения. Но векторно-координатный метод значительно всё упрощает. Не будем ломать голову над тем, по какой прямой пересекаются плоскости. Просто отметим координаты нужных нам точек и найдем угол между нормалями к плоскостям AEF и BDD 1 .

Сначала - нормаль к плоскости BDD 1 . Конечно, мы можем подставить координаты точек B, D и D 1 в уравнение плоскости и найти коэффициенты, которые и будут координатами вектора нормали. А можем сделать хитрее - увидеть нужную нормаль прямо на чертеже. Ведь плоскость BDD 1 - это диагональное сечение куба. Вектор перпендикулярен этой плоскости.

Итак, первый вектор нормали у нас уже есть:

Напишем уравнение плоскости AEF.

Берем уравнение плоскости и по очереди подставляем в него, вместо x, y и z, соответствующие координаты точек A, E и F.

Упростим систему:

Пусть С = -1. Тогда A = B = 2.

Уравнение плоскости AEF:

Нормаль к плоскости AEF:

Найдем угол между плоскостями:

5. Основание прямой четырехугольной призмы BCDA 1 B 1 C 1 D 1 - прямоугольник ABCD, в котором AB = 5, AD = √33. Найдите тангенс угла между плоскостью грани AA 1 D 1 D и плоскостью, проходящей через середину ребра CD перпендикулярно прямой B 1 D, если расстояние между прямыми A 1 C 1 и BD равно √3.

Эта задача наглядно показывает, насколько векторный метод проще классического. Попробуйте, для разнообразия, построить необходимые сечения и провести все доказательства - как это делается в «классике»:-)

Строим чертеж. Прямую четырехугольную призму можно по-другому назвать "параллелепипед".

Замечаем, что длина и ширина параллелепипеда у нас есть, а вот высота - вроде не дана. Как же ее найти?

«Расстояние между прямыми A 1 C 1 и BD равно √3». Прямые A 1 C 1 и BD скрещиваются. Одна из них - диагональ верхнего основания, другая - диагональ нижнего. Вспомним, что расстояние между скрещивающимися прямыми равно длине их общего перпендикуляра. Общий перпендикуляр к A 1 C 1 и BD - это, очевидно, OO 1 , где O - точка пересечения диагоналей нижнего основания, O 1 - точка пересечения диагоналей верхнего. А отрезок OO 1 и равен высоте параллелепипеда.

Итак, AA 1 = √3

Плоскость AA 1 D 1 D - это задняя грань призмы на нашем чертеже. Нормаль к ней - это любой вектор, перпендикулярный задней грани, например, вектор или, еще проще, вектор .

Осталась еще «плоскость, проходящая через середину ребра CD перпендикулярно прямой B 1 D». Но позвольте, если плоскость перпендикулярна прямой B 1 D - значит, B 1 D и есть нормаль к этой плоскости! Координаты точек B 1 и D известны:

Координаты вектора - тоже.

Все определения и теоремы, связанные с векторами на плоскости, верны и для пространства. Напомним основные определения.

Чтобы определить вектор нам понадобится

Определение

Направленным отрезком называется упорядоченная пара точек пространства. Направленные отрезки называются равными , если они имеют равную длину и направление.

Определение

Вектором называется множество всех равных между собой направленных отрезков.

Векторы обычно обозначают строчными латинскими буквами со стрелкой сверху: $\vec{a}$, $\vec{b}$, $\vec{c}$. Направленные отрезки обозначают, указывая начало и конец, также со стрелкой сверху: $\vec{AB}$.

Вектор - множество, состоящее из бесконечного числа элементов. Часто про направленный отрезок говорят "вектор". Если $\vec{AB} \in \vec{a}$, то говорят, что направленный отрезок $\vec{AB}$ изображает вектор $\vec{a}$. При этом на чертеже рисуется направленный отрезок, а говорят про него "вектор". Например, когда мы говорим "отложим вектор $\vec{r}$ от точки $O$, то имеется в виду, что мы строим направленный отрезок $\vec{OR}$, изображающий вектор $\vec{r}$.

Определение

Векторы называются равными , если равны изображающие их направленные отрезки.

Над векторами можно производить операции сложения и вычитания, а также умножать данный вектор на действительное число.

Из планиметрии известны правило треугольника: $\vec{a}+\vec{b} = \vec{c}$,

правило параллелограмма: $\vec{a}+\vec{b} = \vec{c}$

и правило ломаной сложения векторов для плоскости, которые верны и в пространстве.

Правило ломаной сложения векторов

Если $A_1, \, A_2, \, \dots, \, A_n$ - произвольные точки пространства, то

$ \vec{A_1A_2} + \dots + \vec{A_{n-1}A_n} = \vec{A_1A_n}. $

Кроме того, в пространстве справедливо

Правило параллелепипеда

Если $\vec{OA} \in \vec{a}$, $\vec{OB} \in \vec{b}$, $\vec{OC} \in \vec{c}$, то, построив на направленных отрезках параллелепипед $OAEBCFDG$, можно найти направленный отрезок $\vec{OD}$, изображающий вектор $\vec{d}$, который является суммой векторов $\vec{a}, \, \vec{b}, \, \vec{c}.$