Температурная зависимость полупроводников. Определение удельного сопротивления полупроводников. Параметры и характеристики терморезисторов

КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ ЭНЕРГЕТИЧЕСКИЙ

УНИВЕРСИТЕТ

Кафедра физики

Реферат

Температурная зависимость проводимости полупроводника

Выполнил: Романов А.В. – группа ЗЭС-1-04___________(дата,подпись)

Проверил: ________________________________________(дата,подпись)

Домашний адрес:

г. Елабуга

ул. Окружное шоссе д. 35 кв. 69

Дата отсылки:

Казань 2006

Полупроводники - это вещества, имеющие при комнатной температуре удельную электрическую проводимость в интервале от 10 -8 до 10 6 Ом -1 м -1 , которая в сильной степени зависит от вида и количества примеси и структуры вещества, а также от внешних условий: температуры, освещения, внешних электрических и магнитных полей, облучения. Электропроводность твердых тел в современной физике объясняется на основе зонной теории. На рис. I показаны упрощенные диаграммы энергетических зон собственного, акцепторного и донорного полупроводников.

Кристаллы полупроводников неизбежно в реальных условиях обладают определенным количеством посторонней примеси, даже если требуется получить материал очень высокой степени чистоты. Примеси также специально вводятся либо во время роста кристаллов с целью получить полупроводник с заданными электрическими свойствами, либо - при изготовлении приборных структур. Такие полупроводники называются легированными или примесными. Атомы примеси, отличаясь от атомов основного кристалла валентностью, создают уровни разрешенных энергий электронов в запрещенной зоне, которые либо могут поставлять электроны в зону проводимости, либо принимать на себя электроны из валентной зоны. Эти процессы мы рассмотрим в дальнейшем. В данном разделе нас будет интересовать идеализированная модель полупроводника, в котором отсутствуют какие-либо примеси. Такие полупроводники называются собственными.

При нагревании проводимость полупроводников резко возрастает. Температурная зависимость проводимости s собственного полупроводника определяется изменением концентрации n и подвижностиэлектронов m - и дырок m + от температуры:

s = e ( n - m - + n + m +) (1)

Подвижность носителей заряда в полупроводниках зависит от температуры сравнительно слабо и с ее возрастанием уменьшается по закону m~T –3/2 . Это объясняется тем, что с повышением температуры возрастает число столкновений в единицу времени, вследствие чего уменьшается скорость направленного движения носителей заряда в поле единичной напряженности.

Рассмотрим донорный полупроводник. Вследствие малой концентрации электронов проводимости полупроводники подчиняются классической статистике Максвелла-Больцмана. Поэтому в области низких температур для концентрации электронов в зоне проводимости с одним видом примеси имеем:

n = A T 3/2 e - D W / kT , (2)

где А - коэффициент, не зависящий от Т; DW - энергия активации примеси, то есть энергетический интервал между донорным уровнем и нижним краем зоны проводимости (рис. Iв)К - постоянная Больцмана.

Рассмотрим упрощенную зонную модель собственного полупроводника, изображенную на рис. 1. Этой моделью мы в основном будем пользоваться в дальнейшем. В данной модели энергия электронов положительная и отсчитывается вверх по оси ординат. Энергия дырок отрицательная и отсчитывается вниз. Под осью абцисс подразумеваются пространственные координаты, а также по этой оси, в зависимости от условий задачи, могут откладываться температура, концентрация примеси, указываться направление электрического поля. Валентная зона и зона проводимости ограничены прямыми, обозначающими: E v - потолок валентной зоны; E c - дно зоны проводимости. Выбор начала отсчета энергии электрона произволен, как правило, она отсчитывается от потолка валентной зоны. Ширина запрещенной зоны определяется как разность E g = E c - E v .

Рассмотрим теперь в чем состоит физическая причина резкого отличия в температурной зависимости проводимости полупроводников и металлов.

Рис. 1. Простая зонная модель собственного полупроводника: E v - потолок валентной зоны; E c - дно зоны проводимости.

E g = E c - E v - ширина запрещенной зоны. G - генерация электронно-дырочной пары, R - рекомбинация электронно-дырочной пары.

Волнистыми стрелками показаны процессы поглощения и испускания фотона при световой генерации и излучательной рекомбинации соответственно.

При температуре Т > 0 средняя энергия фонона равна (k - постоянная Больцмана), например, при комнатной температуре Т = 300 К она равна 0,039 эВ. Однако в силу распределения Максвелла - Больцмана существует конечная вероятность того, что фонон имеет энергию Eg, которая может значительно превышать среднюю, и эта вероятность пропорциональна. Электроны постоянно обмениваются энергией с фононами в процессе столкновений. Естественно, в стационарных условиях электронная подсистема кристалла в целом находится в тепловом равновесии с колебаниями решетки, однако отдельные электроны могут иметь энергию много больше средней. Тепловым возбуждением электрона называется акт передачи энергии от фонона электрону такой, что происходит разрыв ковалентной связи.

Если электрон получит от фонона энергию больше или равную Eg он может "заброситься" из валентной зоны в зону проводимости, где он становится свободным и может участвовать в переносе заряда при приложении внешнего электрического поля. Одновременно с переходом электрона в зону проводимости в валентной зоне образуется ІсвободнаяІ дырка, которая также участвует в электропроводности. Таким образом, в собственных полупроводниках свободные электроны и дырки рождаются парами, этот процесс называется генерацией электронно-дырочных пар (рис. 1). Наряду с этим происходит обратный процесс - взаимная аннигиляция электронов и дырок, когда электрон возвращается в валентную зону. Этот процесс называется рекомбинацией электронно-дырочных пар. Число генерированных (рекомбинированных) пар носителей заряда в единице объема в единицу времени называется темпом генерации-G (рекомбинации - R). В стационарных условиях темпы тепловой генерации и рекомбинации равны, то есть G = R (1)

Заметим, что генерация электронно-дырочных пар может происходить и при облучении полупроводника светом частотой v, такой, что энергия фотона удовлетворяет условию

При световой генерации электрон поглощает фотон (рис. 1). При обратном процессе рекомбинации высвободившаяся энергия, равная Eg, может либо передаваться от электрона обратно решетке (фонону), либо уноситься фотоном. Могут также одновременно рождаться фононы и фотоны, но тогда, в силу закона сохранения, их парциальные энергии меньше Eg. Если энергия уносится фотоном, то этот процесс называется излучательной рекомбинацией. Световая генерация и излучательная рекомбинация лежат в основе работы целого класса оптоэлектронных полупроводниковых приборов - источников и приемников излучения, которые мы в данном курсе не имеем возможности рассматривать.

Очевидно, что при тепловой генерации более вероятны переходы электронов с одного из верхних уровней валентной зоны, если они заняты электронами, на один из нижних уровней зоны проводимости, - если они свободны, поскольку для таких переходов требуется меньшая энергия. Отсюда следует, что темп генерации G пропорционален: числу возможных занятых состояний электронов N v вблизи потолка валентной зоны; числу незанятых уровней N c вблизи дна зоны проводимости (физический смысл N v и N c будет рассмотрен в дальнейшем) и вероятности электрону иметь энергию E g:

где, a - коэффициент пропорциональности, зависящий от частоты столкновений фононов и электронов. С другой стороны, темп рекомбинации R пропорционален вероятности "встречи" носителей, т.е. произведению концентраций электронов n и дырок р (g - коэффициент пропорциональности):

так как для собственного полупроводника n = p. В стационарном случае имеет место равенство (2), тогда

Проводимость кристалла согласно (6) пропорциональна концентрации электронов и подвижности. Как видно из выражения (7) концентрация n в собственном полупроводнике экспоненциально растет с увеличением температуры, в то же время температурная зависимость подвижности в проводимости играет менее заметную роль. Таким образом, проводимость собственного полупроводника в первом приближении растет с температурой по такому же закону, что и концентрация электронов и дырок (пока не станет заметным рассеяние носителей заряда на тепловых колебаниях решетки). Поэтому можно записать:

(8)

Итак, с феноменологической точки зрения полупроводники отличаются от металлов тем, что в полупроводниках с повышением температуры проводимость очень быстро растет. Физическая причина этого заключается в увеличении темпа тепловой генерации электронно-дырочных пар с ростом температуры. Если прологарифмировать выражение (8), то оно примет вид

Следовательно, если на графике по оси ординат откладывать lns , а по оси абцисс - обратную температуру, то получим прямую с наклоном E g /2k , как показано на рис. 2. Таким образом, зная наклон этой прямой можно определить важнейшую характеристику полупроводника - ширину запрещенной зоны. Определяемую таким образом величину Eg называют термической шириной запрещенной зоны, поскольку ее еще определяют и из оптических измерений по спектрам поглощения излучения и вычисляют Eg, на основании выражения (9).

Собственная проводимость имеет место в хорошо очищенных полупроводниках, когда примеси не оказывает влияния на электрические свойства. При абсолютном нуле температуры валентная зона полностью заполнена электронами, в зоне проводимости все уровни свободны и электропроводность отсутствует. При повышении температуры начинается тепловая генерация свободных носителей заряда. Электроны, получая от тепловых колебаний решетки энергию достаточную для преодоления запрещенной зоны шириной , перебрасываются из валентной зоны проводимости (рисунок 72.2), образуя в валентной зоне равное количество дырок. Переходы происходят при любой температуре .

Тепловая генерация носителей заряда в собственном полупроводнике.

W C

W c – дно зоны проводимости; W V – потолок валентной зоны; ∆W – ширина запрещенной зоны; , ○ – электрон и дырка

Рисунок 72.2

Объяснение переходов при связано со статическим распределением энергии между атомами тела (энергия тепловых колебаний отдельных атомов в течение некоторых промежутков времени может быть и больше ее среднего значения). Наряду с возбуждением носителей происходят и обратные процессы их рекомбинации, заключающиеся в возвращении электронов из зоны проводимости в валентную зону. При этом исчезают пары «электрон-дырка». Процесс генерации свободных носителей зарядов уравновешиваются процессом рекомбинации, и при каждой установившейся температуре кристалл находится в состоянии термодинамического равновесия, имея концентрацию носителей заряда, соответствующей данной температуре. Статистический расчет показывает, что концентрация электронов n, а, следовательно, и концентрация дырок p, быстро растут с повышением температуры по экспоненциальному закону

где А – постоянная, характерная для данного полупроводника, в первом приближении не зависящая от температуры; е – основание натурального логарифма; k – постоянная Больцмана; Т – абсолютная температура.

Например, в чистом кремнии, такая зависимость обеспечивает рост концентрации электронов от при нагреве от комнатной температуры до температуры электронов .

В собственном полупроводнике удельная электропроводность:

где е – заряд электрона; – подвижность электронов; – подвижность электронов.

Подвижность носителей заряда, представляющая собой скорость дрейфа их в электрическом поле единичной напряженности, в полупроводниках также зависит от температуры. Наиболее часто в области низких температур подвижность растет вследствие рассеяния на примесях, в области высоких температур, где преобладает рассеяние на тепловых колебаниях решетки – убывает с ростом Т. Типичный график зависимости приведен на рисунке 72.3. Однако температурная зависимость концентрации носителей заряда в полупроводниках обычно намного более сильная, чем зависимость подвижности от температуры. Поэтому температурной зависимостью подвижности можно пренебречь и считать, что изменение электропроводимости с температурной определяются только изменением концентрации носителей заряда. Из формул (1) и (2) для зависимости удельной электропроводности от температуры следует выражение

где – коэффициент, характерный для данного полупроводникового материала и представляющего собой при .

Рисунок 72.3

Зависимость удобно изображать в полулогарифмическом масштабе. Действительно

это выражение в координатах и дает прямую, наклон которой определяется величиной W. Графики и для собственного полупроводника даны на рисунок 72.4.


Рисунок 72.4

Сопротивление R образца длиной и площадью поперечного сечения S выражается через удельное сопротивление :

Тогда, согласно (72.3),

График для собственного полупроводника представляет собой прямую линию, наклон которой тем больше, чем шире запрещенная зона полупроводника. На рисунок 72.5 прямым 1,2,3 соответствуют полупроводники, для которых .


Рисунок 72.5

Примеси и дефекты решетки существенным образом влияют на электрические свойства полупроводников. Например, добавление в кремний бора в количестве одного атома на атомов кремния увеличивает проводимость при комнатной температуре в тысячу раз по сравнению с чистым кремнием.

Статистические расчеты показали, что концентрация основных носителей заряда (электронов в полупроводниках n-типа и дырок в полупроводниках p-типа) в области примесной проводимости также растет по экспоненциальному закону.

где – энергия ионизации примеси; и – коэффициенты, определяемые соответственно концентрациями атомов доноров и акцепторов.

Концентрации неосновных носителей заряда намного ниже, причем при любой температуре.

где – собственная концентрация носителей заряда при этой температуре в данном полупроводнике. Таким образом, чем больше n, тем меньше p и наоборот.

Ввиду более слабой зависимости подвижности от температуры, чем концентрации от температуры, и в области примесной проводимости зависимость также определяется температурным ходом концентрации

где – постоянная, определяемая полупроводниковым материалом и концентрацией примеси в нем.

Логарифмируя (72.9), получим

На рисунке 72.6 приведен график зависимости удельной электропроводности примесного полупроводника в широком диапазоне температур полулогарифмических координатах.

Температурная зависимость электропроводимости примесного полупроводника.



Рисунок 72.6

На этом графике можно выделить три участка. 1 - участок примесной проводимости, при которой концентрация основных носителей заряда растет за счет ионизации примесных уровней. Наклон прямой определяется энергией ионизации примеси. При температуре Т s все примеси оказываются ионизированными и далее до Т i концентрация основных носителей заряда сохраняются приблизительно постоянной и равной концентрации примесных атомов – участок 2. Температурная зависимость в этой области, когда , определяется температурной зависимостью подвижности. При температурах (3 участок) генерируется пары «электрон-дырка» и наклон прямой определяется шириной запрещенной зоны .

Если образцы одного и того же полупроводникового материала легированы различным количеством одинаковой примеси, то при увеличении концентрации примеси (концентрация растет с увеличением порядкового номера кривой на рисунок 72.7) значения в области примесной проводимости возрастают, истощение примеси и перехода от примесной к собственной проводимости смещаются в сторону более высоких температур. При больших концентрациях примесных атомов они остаются не полностью ионизированы вплоть до температуры, при которой начинает преобладать собственная проводимость (кривая 4).


Зависимость электропроводности полупроводников от температуры при различных содержаниях примеси.


Цель работы:

  • 1. Построить зависимости R от Т для металла и полупроводника, и ln (R) от 1/Т для полупроводника.
  • 2. Определить наклон линейной части графика и рассчитать энергию активации для полупроводника по формуле:

полупроводник излучение электропроводность металл

Е=2k (ln(R)/ (1/T))

где k=1.38*10-23 Дж/К, Т - температура в Кельвинах, R (Ом) - сопротивление.

3. Определить наклон линейной части графика и рассчитать коэффициент линейного расширения для металла и сравнить его с табличным значением.

Для металлов и полупроводников известен эффект изменения проводимости при изменении температуры. Механизм явления в этих веществах различен. Как известно, у металлов с ростом температуры сопротивление растет в результате увеличения рассеяния энергии носителей тока на колебаниях решетки по закону

RТ = Ro(1 + a(Т - То)),

где Ro - сопротивление при 0оС (273 К); RТ - сопротивление при температуре Т1, a - температурный коэффициент.

Для различных металлов его величина различна. Так для платины a = 3,9·10-3 К-1, для никеля a = 5,39·10-3 К-1. На свойстве изменения сопротивления с температурой созданы термометры сопротивлений, позволяющие измерять по величине сопротивления температуру в диапазоне от -200 о С до +850 о С. Наиболее распространенными являются термометры сопротивление на основе никеля и платины: Pt-100 или Ni-100. Их сопротивление при 0 о С выбирают равным 100 Ом. Стандартными также являются сопротивление в 500 Ом и 1 кОм. Для перевода измеренной величины сопротивление в температурные величины имеются специальные таблицы.

1. Температурная зависимость удельного сопротивления

Движение свободных электронов в металле можно рассматривать как распространение плоских волн, длина которых определяется соотношением де Бройля:

где v - средняя скорость теплового движения, Е - энергия частицы.

Такая плоская волна в строгом периодическом потенциале решетки идеального кристалла распространяется без рассеяния энергии, т.е. без затухания. Таким образом, длина свободного пробега электрона в идеальном кристалле равна?, а электрическое сопротивление равно нулю. Рассеяние энергии, приводящее к сопротивлению, связано с дефектами структуры.

Эффективное рассеяние волн происходит тогда, когда размер рассеивающих центров превышает. В металлах энергия электронов равна 3?15 эВ, т.е. l = 3?7 A. Поэтому любые микронеоднородности препятствуют распространению волны.

В чистых металлах единственной причиной, вызывающей рассеяние и ограничивающей длину свободного пробега электронов являются тепловые колебания решетки, т.е. атомов.

С ростом температуры амплитуда тепловых колебаний растет. Если считать упрощенно, что интенсивность рассеяния прямо пропорциональна поперечному сечению объема сферы, которую занимает колеблющийся атом, а S сечения Da2, где Da - амплитуда тепловых колебаний, то длина свободного пробега:

где N - число атомов в единице объема.

Потенциальная энергия атома, отклоняющегося на Da от узла, определяется упругостью. Энергия упругости, Еупр, записывается как

где kупр - коэффициент упругости.

Средняя энергия одномерного гармонического осциллятора равна kТ

KТ > (Da)2 = (4)

В области низких температур уменьшается не только амплитуда колебаний, но и частоты колебаний атомов и рассеяние становится не эффективным, т.е. взаимодействие с решеткой лишь незначительно меняет импульс электронов.

Максимальная частота тепловых колебаний vmax определяется температурой Дебая, тепловая энергия

В классической теории удельная проводимость

где vF - скорость электрона вблизи уровня Ферми, n - концентрация электронов в единице объема.

считая, что

Рис. 1. Зависимость удельного сопротивления металлов: а) - в широком диапазоне температур, б) - для различных материалов.

Линейная аппроксимация температурной зависимости rT(T) справедлива до Т ~, а ~ 400-450 К для большинства металлов. Поэтому линейное приближение справедливо при температурах от комнатной и выше. При Т < Tкомн. cпад rT обусловлен выключением фононных частот и rT ~ Т5 - закон Блоха - Грюнайзена (участок степенной зависимости очень мал) (Рис. 1).

Таким образом,

RT = R о

выполняется в некотором интервале температур (Рис. 1.).

Платиновый измерительный резистор на керамической основе типа Pt-100 работает в диапазоне 0 ? 400С, при этом величина сопротивления изменяется от 100 до 247,04 Ом практически линейно.

2. Основы зонной теории кристалла.

Твердое тело, как известно, состоит из атомов, т.е. из ядер атомов и электронов. Ядра атомов образуют кристаллическую решетку, которая обладает пространственной периодичностью. Движение электронов в твердом теле эквивалентно движению электронов в пространственно периодическом поле. При описании движения электрона в периодическом поле кристаллической решетки квантовая механика дает такие результаты, которые удобно сравнивать с квантово механически результатами для изолированного атома. Электроны в изолированном атоме обладают дискретными значениями энергии, а спектр свободного атома представляет набор дискретных спектральных линий (рис. 2).

При объединении N одинаковых атомов, образующих твердое тело, каждый уровень энергии расщепляется на N близко лежащих уровней, которые образуют зону (рис. 2-б).

Таким образом, вместо системы отдельных уровней энергии в твердом теле появляется система энергетических зон, каждая из которых состоит из близко расположенных уровней. Зоны дозволенных энергий отделены друг от друга некоторым интервалом, называемым запрещенной зоной (рис. 2). Энергетические "расстояния" между разрешенными зонами (т.е. ширина запрещенных зон) определяется энергией связи электронов с атомами решетки.

  • а) Энергетические уровни изолированного атома.
  • б) Превращение энергетических уровней отдельного атома в энергетические зоны.

Рис. 3.

Если у элементов часть уровней свободна или на основную зону накладывается свободная, незанятая зона, то такие элементы обладают ярко выраженными металлическими свойствами. Распределение электронов по энергии в металле определяется статистикой Ферми-Дирака.

Функция распределения имеет вид:

К - постоянная Больцмана,

Т - абсолютная температура,

Е - кинетическая энергия электрона, находящегося на данном уровне энергии,

EF - энергия уровня Ферми.

Графическая зависимость от Е показана на рис. 3. Кривая изображает эту зависимость для Т=0. График показывает, что все состояния с энергией, меньшей ЕF, будут заняты электронами. В состояниях с энергией E>EF электронов нет. При температурах выше абсолютного нуля (T>0) распределения электронов по энергиям дается кривой 2. В этом случае имеются электроны с энергией E>EF.

Рис. 4.

В полупроводниках и диэлектриках зона валентных электронов полностью заполнена, а ближайшая свободная зона - зона проводимости отделена от нее запрещенной зоной. Для диэлектриков ширина запрещенной Е достигает нескольких электрон-вольт, для полупроводников она значительно меньше, например, для германия E=0,72 эВ. Ширина запрещенной зоны - это важнейший параметр полупроводникового или диэлектрического материала и во многом определяет его свойства.

Электроны проводимости в полупроводниках, так же как и в металлах, рассматриваются, как идеальный газ и подчиняется статистике Ферми-Дирака. Функция распределения имеет вид.

На свойства полупроводников существенное влияние оказывают атомы постороннего вещества, находящиеся в кристаллической решетке. Примесь нарушает периодичность кристалла и образует в энергетическом спектре полупроводника дополнительные уровни, расположенные в запрещенной зоне. Если энергетический уровень примеси находится вблизи дна зоны проводимости (рис. 5), то тепловой переброс электронов с этих уровней в зону проводимости будет более вероятен, чем переход их из заполненной зоны, т.к. концентрация электронов в зоне проводимости в этом случае будет больше концентрации дырок в вакантной зоне. Такие примеси называют донорными, а проводимость электронной или n-типа. Если уровни примеси находятся вблизи границы валентной зоны, то электроны, попадающие на них под действием теплового движения, окажутся связанными. В этом случае основными носителями тока будут дырки в заполненной зоне. Такие примеси называются акцепторными, а полупроводник обладает дырочной проводимостью или р-типа.

Рис. 5.

а) донорный; б) акцепторный

Поясним сказанное на примере элементарного полупроводника германия, расположенного в 4-подгруппе таблицы Менделеева. Каждый из его атомов имеет четыре валентных электрона и четыре тетраэдрически ориентированных в пространстве связи. Благодаря парно электронному (ковалентному) взаимодействию соседних атомов, его V-зона оказывается полностью занятой. Замещение атомов основного вещества атомами примесных элементов 5 подгруппы - сурьмы, мышьяка, фосфора - означает включение в систему парно - электронных связей атомов с "лишними" электронами. Эти электроны связаны с окружающими атомами значительно слабее, чем остальные и сравнительно легко могут освободиться о валентных связей. На энергетическом языке это означает появление вблизи нижнего края зоны проводимости донорных уровней с энергией ионизации. Аналогичный результат получается при введении примесей 3-подгруппы - алюминия, индия, галлия: недостаток электронов из V-зоны на акцепторные уровни. Существенно, что концентрация атомов примесей много меньше атомов основного вещества - в таком случае энергетические уровни атомов можно считать локальными.

Температурная зависимость электропроводности полупроводников.

В собственном полупроводнике свободные носители возникают только за счет разрыва валентных связей, поэтому число дырок равно числу свободных электронов, т.е. n=p=ni ,где ni - собственная концетрация, и электропроводность при данной температуре равна:

где Мn и Mp - подвижности электронов и дырок,

е - заряд электрона.

В донорном полупроводнике электропроводность определяется

В случае преобладания акцепторных примесей

Температурная зависимость электропроводности определяется зависимостью концентрации n от подвижности носителей заряда М от температуры.

Собственный полупроводник. Для собственного полупроводника концентрация носителей заряда (n=p=ni) может быть выражена соотношением:

где сравнительно слабо зависит от температуры.

Из (3) видно что, концетрация свободных носителей ni зависит от температуры Т, ширины запрещенной зоны Е, значений эффективных масс носителей заряда m*n и m*p. Температурная зависимость концетрации ni при Е >>kT определяется в основном экспоненциальным членом уравнения.

Так как С слабо зависит от температуры, то график зависимости ln ni от 1/Т должен выражаться прямой линией.

Донорный полупроводник. При низких температурах можно пренебречь числом переходов электронов из валентной зоны в зону проводимости и рассматривать только переход электронов с донорных уровней в зону проводимости.

Температурная зависимость концентрация свободных электронов донорного полупроводника при сравнительно низких температурах и частичной ионизации примесных атомов выражается соотношением:

где Na - число уровней (атомов) донорной примеси в единице объема полупроводника (концетрация донорной примеси)

Е a-глубина залегания донорной примеси.

Из (10) следует

Это область слабой ионизации примеси. Она обозначена цифрой 1 на рис. 6, на котором показано изменение концентрации n с температурой для донорного полупроводника.

Рис. 6

При более высокой температуре kT>Е a, когда, все электроны с донорных уровней могут перейти в C-зону. Концетрация электронов в зоне проводимости становится равной концетрации донорной примеси n=Na.

Эта область температур, при которой происходит полная ионизация примеси, носит название области истощения примеси и на рис. 6 отмечена цифрой 2.

При дальнейшем росте температуры начинается ионизация атомов основного вещества. Концетрация электронов с-зоне будет увеличиваться уже за счет переходов электронов из валентной в C-зону, появляется неосновные носители заряда-дырки в валентной зоне. Когда уровень Ферми достигает середины запрещенной зоны, то n=p=ni и полупроводник от примесного переходит к собственному (обл. 3. рис. 6).

Акцепторный полупроводник. При низких температурах можно пренебречь переходом электронов из V в C-зону и рассматривать только переход электронов из валентной зоны на акцепторные уровни. В этом случае температурная зависимость концентрации свободных дырок выражается в виде:

Где Na -концетрация акцепторной примеси,

Энергия активации акцепторной примеси.

Из (12) следует

С ростом температуры все акцепторные уровни заполняются электронами, перешедшими из V-зоны. При kT>Е a наступает истощение примеси, концентрация дырок в V-зоне равна концентрации акцепторной примеси Na.

При дальнейшем повышении температуры возникает все больше собственных носителей за счет перехода электрона из V в C-зону и при некоторой температуре проводимость полупроводника из примесной превращается в собственную.

Температурная зависимость подвижности носителей.

Подвижность носителей заряда М, численно равна скорости дрейфа носителей, приобретаемой ими под действием электрического поля единичной напряженности:

Подвижности электронов, М, и дырок, Мр, различны по величине вследствие различия в эффективных массах и времени свободного пробега электрона и дырки, которое зависит от механизма рассеяния электронов и дырок в кристаллической решетке полупроводника.

Можно выделить несколько механизмов рассеяния носителей заряда:

на тепловых колебаниях атомов кристаллической решетки;

на ионизированных примесях (ионы примеси);

на нейтральных примесях (атомы примеси);

на дефектах решетки (вакансии, точечные дефекты, дислокации, границы кристаллитов и др.);

на носителях заряда.

Ввиду малости концетрации дефектов и носителей заряда 4) и 5) видами рассеяния обычно пренебрегают.

В случае рассеяния носителей заряда (волн этих носителей) на тепловых колебаниях решетки подвижность, обусловленная этим видом рассеяния, уменьшается с ростом температуры по закону

Рассеяние на тепловых колебаниях решетки преобладает при высоких температурах.

В случае рассеяния носителей на ионизированных примесях подвижность растет с температурой:

Этот механизм рассеяния преобладает при низких температурах.

Если в рассеяния носителей участвуют оба механизма 1) и 2) и они независимы, то температурная зависимость М может быть представлена в виде:

где a и b -коэффициенты пропорциональности.

Рассеяние носителей на нейтральных примесях не зависит ни от температуры, ни от энергии носителей и оказывает влияние при очень низких температурах, когда тепловые колебания решетки не играют заметной роли и степень ионизации примесей мала.

Температурная зависимость.

Учитывая зависимость концентрации и подвижности носителей заряда от температуры, удельную электропроводность собственного полупроводника можно записать в виде:

Множитель медленно меняется с температурой, тогда как множитель сильно зависит от температуры, когда E>>kT.

Следовательно, для не слишком высоких температурах можно считать, что

И выражение (18) заменить более простым

Рассмотрим поведение полупроводника при переходе от низких температур к высоким. В донорном или акцепторном полупроводнике проводимость при низких температурах является примесной. Так как температура низка, то ионизованных примесей мало и преобладает рассеяние на нейтральных атомах, при котором М не меняется с температурой. Поэтому температурная зависимость будет определяться зависимостью концентрации от температуры. Для электропроводности донорного полупроводника согласно (2.4) и (2.5) можно записать

Соответственно для электропроводности акцепторного полупроводника.

Очевидно, если уравнения (14) и (15) построить графически в координатах ln и 1/T, то из наклонов этих зависимостей (рис. 7) можно определить энергию ионизации донорной или акцепторной примеси:

Будем повышать температуру и попадем в область истощения примеси (рис. 6. обл. 2), в которой концетрация основных носителей остается постоянной и проводимость меняется вследствие изменения подвижности М с температурой.

На участке 2 кривой ln (1/T) (рис. 7)

И электропроводность растет незначительно с температурой, т.к. преобладает рассеяние на ионах примеси, при котором М~Т3/2. Далее с ростом температуры электропроводность уменьшается, т.к. преобладает рассеяние на тепловых колебаниях решетки, при котором M~T3/2 (участок 3, рис. 7).

Наконец при достаточно высоких температурах проводимость полупроводника становится собственной, и в этих условиях можно определить ширину запрещенной зоны полупроводника

Где k=1.38*10-23 Дж/К=8.6*10-5 эв/К

Рис. 7.

а) - собственный полупроводник, б) - примесный полупроводник.

Инструкция к лабораторной работе "Изучение температурной зависимости электропроводности металлов и полупроводников"

Для нагрева образцов служит электропечь. Температура образцов измеряется датчиком измерителя температуры на измерительном устройстве. Зависимость сопротивления металла от температуры можно найти по формуле:

У полупроводника эта же зависимость имеет следующий характер:

Порядок работы:

  • 1. температурная зависимости электропроводности металлов.
  • 1.1 Включить приборы в сеть.
  • 1.2 Переключатель "Образец" установить положение "1".
  • 1.3 На передней панели измерительного устройства нажать кнопку "НАГРЕВ" (при этом индикатор "НАГРЕВ" должен засветиться).
  • 1.4 Левый индикатор показывает в непрерывном режиме величину сопротивление образца, соответствующее температуре нагрева печи по показания правого индикатора.
  • 1.5 Измерить сопротивление меди в интервале температур от комнатной до 100 0 С.
  • 1.6 При достижении максимальной температуры отключить нагрев печи и включить вентилятор.
  • 2. температурная зависимости электропроводности полупроводников.
  • 2.1 Переключатель "Образец" установить положение "3".
  • 2.2 Провести те же действия, что в пункте 1
  • 3. Обработка экспериментальных данных:
  • 3.1. Построить зависимости R от Т для металла и полупроводника, и ln (R) от 1/Т для полупроводника.
  • 3.2 Определить наклон линейной части графика и рассчитать энергию активации для полупроводника по формуле:

Е=2k (ln(R)/ (1/T))

где k=1.38*10-23 Дж/К, Т-температура в Кельвинах, R (Ом)-сопротивление.

3.3 Определить наклон линейной части графика и рассчитать температурный коэффициент для металла и сравнить его с табличным значением.

Зонная структура полупроводников такова, что при низких температурах у них разрешенная зона валентных электронов полностью заполнена электронами, а ближайшая свободная зона проводимости отделена от нее запрещенной зоной некоторой величины и пуста. Перевод электрона в зону проводимости может быть осуществлен за счет энергии теплового движения, света или корпускулярного излучения. Если электрон каким-либо способом переведен в зону проводимости, то он может осуществлять перенос заряда. После переброски электронов в валентной зоне остаются пустые места – незаполненные состояния электронов, в результате чего остальные электроны получают возможность перемещаться под действием электрического поля, т.е. также вносят вклад в ток. При описании такого движения электронов удобнее рассматривать движение не самих электронов, а пустых мест, называемых дырками. Дырки ведут себя как положительные носители тока с зарядом +е, равным по абсолютной величине заряду электрона и отличающимся от него знаком. Если дырки образуются за счет переброса электронов из валентной зоны в зону проводимости, то число электронов в полупроводнике равно числу дырок. Такой полупроводник называется собственным (рис. 2.4, а).

Рис. 2.4. Энергетические диаграммы полупроводника:

а) собственный; б) электронный; в) дырочный;

Е С – дно зоны проводимости; E V –потолок запрещенной зоны; Е д – донорный уровень, Е а – акцепторный уровень

Однако в любом кристалле имеются различные дефекты – чужеродные атомы, пустые узлы – вакансии, дислокации и т.п. Локализованный вблизи дефекта электрон имеет энергию, попадающую как раз в запрещенную зону, в результате чего в запрещенной зоне образуется примесный уровень. Если такой уровень лежит недалеко от зоны проводимости, то уже при небольшом повышении температуры электроны будут переходить с уровней в зону, в результате чего они получают возможность двигаться по кристаллу.

Полупроводник, у которого электроны в зоне образуются вследствие их перехода с примесных уровней, называется примесным электронным полупроводником (рис. 2.4, б). В полупроводнике могут быть локальные уровни, которые в нормальном состоянии не заняты электронами. Если такие уровни находятся близко от края валентной зоны, то при повышении температуры электроны валентной зоны могут захватываться ими, вследствие чего в валентной зоне образуются подвижные дырки. Полупроводник с таким типом примесной проводимости – дырочный полупроводник (рис. 2.4, в).

Таким образом, носителями тока в полупроводнике являются электроны в зоне проводимости и дырки в валентной зоне, а электропроводность полупроводника может быть выражена следующим образом:


где , – подвижности носителей заряда;

n , p – концентрации электронов и дырок соответственно;

e – заряд электрона.

Таким образом, для нахождения зависимости электропроводности от температуры необходимо выяснить, как меняются концентрации носителей тока и их подвижность с изменением температуры.

Электроны проводимости в полупроводниках подчиняются функции распределения Ферми-Дирака:

которая выражает вероятность того, что электрон находится в квантовом состоянии с энергией Е при температуре Т . Здесь E F – энергия Ферми, k – постоянная Больцмана.

Электропроводность собственного полупроводника определяется электронами в зоне проводимости. Их концентрация может быть определена числом всех занятых электронами состояний n (E ) в зоне проводимости:

где g (E ) – плотность квантовых состояний;

f (E ) – функция Ферми-Дирака;

E c – уровень энергии, соответствующий дну зоны проводимости.

Окончательное выражение для температурной зависимости концентрации электронов в зоне проводимости собственного полупроводника имеет вид:

где N V , N C – эффективная плотность состояний в валентной зоне, зоне проводимости.

Теперь рассмотрим влияние температуры на подвижность носителей заряда. Известно, что величина подвижности определяется длиной свободного пробега электронов, т.е. процессами рассеяния носителей заряда в полупроводнике:

где – средняя длина свободного пробега электрона;

– средняя скорость теплового движения;

m * – эффективная масса носителя;

В – некоторый коэффициент;

ζ – принимает значения 1/2, 3/2, 5/2 в зависимости от типа кристаллической решетки.

Общий ход изменения проводимости с температурой можно записать в виде:

В этом выражении множитель медленно изменяется с температурой, тогда как экспонента сильно зависит от температуры, E g >>kT . Поэтому для не слишком высоких температур и выражение (2.6) можно заменить более простым

Если уравнение (2.7) построить графически в координатах ln σ от Т -1 .

то ширина запрещенной зоны E g может быть определена из наклона этой линейной зависимости (рис. 2.5, а).

Рис. 2.5. Графики электропроводности полупроводника:

а – собственная электропроводность; б – примесная электропроводность

При наличии в полупроводниках примесей к собственной проводимости добавляется примесная проводимость, и тогда электропроводимость σ можно представить как сумму собственной и примесной проводимостей:

где ΔE – энергия ионизации примеси.

Обычно ширина запрещенной зоны много больше энергии ионизации примеси, т.е. E g >>ΔE . Значит, в области низких температур мало количество электронов, освобождаемых атомами решетки. Поэтому при низких температурах электропроводность примесного полупроводника будет в основном обусловлена электронами примеси. При достаточно высокой температуре практически все атомы будут ионизированы, и действительное возрастание проводимости будет происходить лишь за счет собственных электронов полупроводника. Идеальный график для примесного полупроводника (рис. 2.5, б) изображается ломаной линией, имеющей два прямолинейных участка, отвечающих электропроводности основной решетки и примеси.

Таким образом, по наклону прямых можно определить ширину запрещенной зоны E g и энергию ионизации примесей. Действительно, тангенс угла наклона прямой (рис. 2.5)

Аналогично определяется ΔE .

Реальный график зависимости ln σ =f(T -1) имеет более сложный характер, поэтому угол наклона лучше отсчитывать по касательным, проведенным к графику в область низких и высоких температур.

Основная особенность полупроводника состоит в том, что электрическая проводимость его является примесной в области низких температур и собственной - в области высоких. Температурный ход проводимости полупроводников определяется температурной зависимостью концентрации и частично подвижности носителей. В области собственной проводимости, температурная зависимость электропроводности определяется в основном температурной зависимостью концентрации носителей заряда, которая пропорциональна , а слабой зависимостью подвижности от температуры можно пренебречь. Так как концентрация носителей в собственном полупроводнике равна , а проводимость собственного полупроводника равна , то собственную проводимость полупроводника можно представить в виде или , (25)

где – коэффициент, слабо зависящий от температуры, так как плотности состояний N C и N V в зоне проводимости и валентной зоне соответственно, а также подвижности электронов μ n и дырок μ р также слабо зависят от температуры.

Аналогично для примесной проводимости имеем:

где С 1 – некоторый коэффициент, слабо зависящий от температуры, ΔЕ пр – энергия ионизации примеси.

Удельная электропроводность полупроводника равна сумме собственной и примесной проводимости: γ = γ i + γ пр. При сравнительно низких температурах (комнатных) преобладает примесная проводимость γ ≈ γ пр, а при высоких температурах все примесные центры ионизированы (примесное истощение) и начинает преобладать собственная проводимость. Тогдаγ ≈ γ i . Иллюстрировать температурную зависимость проводимости полупроводника удобно с помощью графика, где на оси ординат отложено значение lnγ, а на оси абсцисс – 1/Т . Прологарифмировав γиз формулы (25), получим выражение:

График зависимости lnγ от 1/Т будет иметь вид ломанной линии (рис. 16). В области низких температур в полупроводнике имеет место примесная проводимость (участок 1…2), увеличение которой с ростом температуры определяется возрастанием концентрации примесных носителей заряда в результате тепловой ионизации примесей. Участок 2…3 (участок примесного насыщения) соответствует температурам, при которых все атомы примеси ионизированы, а собственная проводимость еще очень мала; в результате уменьшении подвижности носителей с ростом температуры из-за рассеяния на тепловых колебаниях решетки, проводимость полупроводника незначительно уменьшается. Для полупроводников с высокой концентрацией примесей, имеющих небольшие значения энергии ионизации ΔЕ пр (как, например, примеси элементов пятой и третьей групп в германии и кремнии, для которых ΔЕ пр составляет сотые доли электрон-вольта), температурная зависимость подвижности несущественна. Дальнейшее повышение температуры вызывает более резкое увеличение электропроводности, что связано с тепловой генерацией собственных электронов и дырок (участок 3…4). На графике (см. рис. 16) случай а соответствует высокой концентрации примеси в полупроводнике (германий), случай b – более низкой концентрации, а случай c соответствует полупроводнику (кремнию) с шириной запрещенной зоны большей, чем у германия. Участок 2…3 играет очень важную роль в работе полупроводниковых приборов, так как соответствует области рабочих температур. Работа многих полупроводниковых приборов нарушается при наступлении собственной электропроводности, поэтому стараются использовать широкозонные полупроводники, такие, чтобы участок 2…3 был как можно больше. В кремнии, например, участку примесного насыщения соответствует диапазон температур от 100 до 500 К.

Температурная зависимость электропроводности полупроводника используется для приближенного определения ширины запрещенной зоны полупроводника Е g и иногда для определения энергии ионизации примесей ΔЕ пр. Используя формулу (27) и взяв на участке собственной проводимости (участок 3…4) значения 1/Т 1 и 1/Т 2 и соответствующие им значения lnγ 1 и lnγ 2 , получаем систему двух уравнений

решая которую относительно Е g , получим формулу

Аналогично, взяв на участке примесной проводимости, если он ясно выражен, температуры 1/Т 3 и 1/Т 4 и соответствующие им значения lnγ 3 и lnγ 4 , получим формулу для вычисления энергии ионизации примеси.