Строение кристаллических тел таблица. Кристаллические тела — Гипермаркет знаний. Аморфное тело не может со временем превратиться в кристаллическое

Твердые тела.

В отличие от жидкостей твердые тела обладают упругостью формы .При всяких попытках изменить геометрию твердого тела в нем возникают упругие силы, препятствующие этому воздействию. Исходя из особенностей внутренней структуры твердых тел, различают кристаллические и аморфные твердые тела. Кристаллы и аморфные тела существенно различаются между собой по многим физическим свойствам.

Аморфные тела по своей внутренней структуре очень напоминают жидкости, поэтому их часто называют переохлаждёнными жидкостям . Как и жидкости, аморфные тела структурно изотропны. Их свойства не зависят от рассматриваемого направления. Объясняется это тем, что в аморфных телах, так же, как и в жидкостях сохраняется ближний порядок (координационное число), а дальний (длины и углы связей) отсутствует.Этими обеспечивается полная однородность всех макрофизических свойств аморфного тела. Типичными примерами аморфных тел являются стекла, смолы, битумы, янтарь.

Кристаллические тела, в отличие от аморфных, имеют четкую упорядоченную микроструктуру, которая сохраняется на макроуровне и проявляется внешне в виде мелких зерен с плоскими гранями и острыми ребрами, называемых кристаллами.

Распространенные в природе кристаллические тела (металлы и сплавы, сахар и поваренная соль, лед и песок, камень и глина, цемент и керамика, полупроводники и т д) обычно являются поликристаллами , состоящими из хаотично ориентированных, сросшихся между собой монокристалликов (кристаллитов ), размеры которых составляют около 1 мкм (10 -6 м) Однако иногда встречаются монокристаллы достаточно больших размеров. Например, монокристаллы горного хрусталя достигают человеческого роста В современной технике монокристаллы играют важную роль, поэтому разработана технология их искусственного выращивания.

Внутри монокристалла атомы (ионы) вещества размещаются с соблюдением дальнего порядка, в узлах четко ориентированной в пространстве геометрической структуры, получившей название кристаллической решётки Каждое вещество образует в твердом состоянии свою, индивидуальную по геометрии кристаллическую решётку. Ее форма определяется структурой молекул вещества. В решетке всегда может быть выделена элементарная ячейка , сохраняющая все её геометрические особенности, но включающая в себя минимально возможное число узлов.

Монокристаллы каждого конкретного вещества могут иметь разные размеры. Однако все они сохраняют одинаковую геометрию, которая проявляется в сохранении постоянных углов между соответствующими гранями кристалла. Если форма монокристалла будет принудительно нарушена, то он при последующем выращивании из расплава или просто при нагревании обязательно восстанавливает свою прежнюю форму. Причиной такого восстановления формы кристалла является известное условие термодинамической устойчивости - стремление к минимуму потенциальной энергии. Для кристаллов это условие сформулировано независимо друг от друга Дж У. Гиббсом, П Кюри и Г. В. Вульфом в виде принципа: поверхностная энергия кристалла должна быть минимальной .


Одной из наиболее характерных особенностей монокристаллов является анизотропия их многих физико-механических свойств. Например, твердость, прочность, хрупкость, тепловое расширение, скорость распространения упругих волн, электропроводность и теплопроводность многих кристаллов могут зависеть от направлений в кристалле. В поликристаллах анизотропия практически не проявляется только из-за хаотичной взаимной ориентации образующих их мелких монокристалликов. Она связана с тем, что в кристаллической решетке расстояния между узлами в различных направлениях в общем случае оказываются существенно разными.

Другой важной особенностью кристаллов можно считать то, что они плавятся и кристаллизуются при постоянной температуре, в полном соответствии с термодинамической теорией фазовых переходов первого рода. У аморфных твердых тел четко выраженный фазовый переход отсутствует. При нагревании они размягчаются плавно, в широком интервале изменения температуры Это означает, что у аморфных тел нет определённой регулярной структуры и при нагревании она разрушается поэтапно, тогда как кристаллы при нагревании разрушают однородную кристаллическую решетку (с её дальним порядком) строго при фиксированных энергетических условиях, а следовательно, и при фиксированной температуре.

Некоторые твёрдые вещества способны существовать устойчиво как в кристаллическом, так и в аморфном состояниях. Характерным примером может служить стекло. При достаточно быстром охлаждении расплава стекло становится очень вязким и затвердевает, не успевая приобрести кристаллическую структуру. Однако при очень медленном охлаждении, с выдержкой на определённом температурном уровне то же самое стекло кристаллизуется и приобретает специфические свойства (такие стёкла называют ситаллами ). Другим типичным примером является кварц. В природе он обычно существует в виде кристалла, а из расплава всегда образуется аморфный кварц (его так и называют плавленым кварцем ). Опыт показывает, что чем сложнее молекулы вещества и чем сильнее их межмолекулярные связи, тем легче при остывании получить твердую аморфную модификацию.

Если кристаллические решетки стереометрически (пространственно) одинаковы или сходны (имеют одинаковую симметрию), то геометрическое различие между ними заключается, в частности, в разных расстояниях между частицами, занимающими узлы решетки. Сами расстояния между частицами называются параметрами решетки. Параметры решетки, а также углы геометрических многогранников определяются физическими методами структурного анализа, например методами рентгеновского структурного анализа.

Источники

Литература

  • Химия: Справ. изд./ В. Шретер, К.-Х. Лаутеншлегер, Х. Бибрак и др.: Пер. с нем. - М.: Химия, 1989.
  • Курс общей физики, книга 3, И. В. Савельев: Астрель, 2001, ISBN 5-17-004585-9
  • Кристаллы / М. П. Шаскольская , 208 с ил. 20 см, 2-е изд., испр. М. Наука 1985

См. также

Ссылки

  • Кристаллы минералов , Формы природного растворения кристаллов
  • Единственный с своём роде завод, производящий Кристаллы

Wikimedia Foundation . 2010 .

Смотреть что такое "Кристаллические тела" в других словарях:

    Все, что признается реально существующим и занимающим часть пространства, носит название физического Т. Всякое физическое Т. образовано из вещества (см. Вещество) и представляет собой, согласно наиболее распространенному учению, совокупность… …

    Химия органического твердого тела (англ. organic sold state chemistry) – раздел химии твердого тела, изучающий всевозможные химические и физико химические аспекты органических твердых тел (ОТТ), в частности, – их синтез, строение, свойства,… … Википедия

    Раздел физики, изучающий структуру и свойства твердых тел. Научные данные о микроструктуре твердых веществ и о физических и химических свойствах составляющих их атомов необходимы для разработки новых материалов и технических устройств. Физика… … Энциклопедия Кольера

    Физика твёрдого тела раздел физики конденсированного состояния, задачей которого является описание физических свойств твёрдых тел с точки зрения их атомарного строения. Интенсивно развивалась в XX веке после открытия квантовой механики.… … Википедия

    Основная механическая величина, определяющая величину ускорения, сообщаемого телу данной силой. М. тел прямо пропорциональны силам, сообщающим им равные ускорения и обратно пропорциональны ускорениям, сообщаемыми им равными силами. Поэтому связь… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    Химия твёрдого тела раздел химии, изучающий разные аспекты твердофазных веществ, в частности, их синтез, структуру, свойства, применение и др.. Ее объектами исследования являются кристаллические и аморфные, неорганические и органические… … Википедия

    Под этим названием известны соединения, которые можно рассматривать, как дигидроароматические углеводороды, в которых обе метиленные группы (СН2) замещены группами СО, т. е., следовательно, с этой точки зрения X. являются… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    Сопротивление, оказываемое телом движению отдельной его части без нарушения связи целого. Такое движение составляет характеристику жидкостей, как капельных, так и упругих, т. е. газов. Малейшая сила приводит в движение часть жидкого тела и… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    Сопротивление, оказываемое телом движению отдельной егочасти без нарушения связи целого. Такое движение составляетхарактеристику жидкостей, как капельных, так и упругих, т.е. газов.Малейшая Сила приводит в движение часть жидкого тела и вызывает … Энциклопедия Брокгауза и Ефрона

    - (хим.). Буквально гетерогенные системы значит разнородные, а гомогенные однородные системы; при этом, однако, есть ряд подразумеваемых допущений, почему вопрос заслуживает более подробного рассмотрения. Материя (Le Chatelier, An. d. m. , 9, 131… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

Книги

  • Пробужденная аура. Развитие вашей внутренней энергии , Эмброуз Кала , Человечество вступает в новую эру - мы эволюционируем в сверхмогущественных созданий света. Наши энергетические тела переходят в новые кристаллические структурывнутри и вокруг нашей ауры.… Категория: Эзотерические знания Серия: Практическая магия Издатель: Феникс ,
  • Пробужденная аура Развитие вашей внутренней энергии Полное руководство по эволюционным изменениям происходящим с человеской аурой , Эмброуз К. , Человечество вступает в новую эру - мы эволюционируем в сверхмогущественных созданий света. Наши энергетические тела переходят в новые кристаллические структурывнутри и вокруг нашей ауры.… Категория:

Кристаллические тела — твёрдые тела, в которых атомы расположены закономерно, образуя трёхмерно-периодическую пространственную укладку — кристаллическую решётку. Порядок атомов может быть дальний и ближний.

Аморфные тела не имеют кристаллической структуры и в отличие от кристаллов не расщепляются с образованием кристаллических граней. Также они, как правило, изотропны (не обнаруживают различных свойств в разных направлениях). Не имеют определённой точки плавления.

Кристаллы характеризуются пространственной периодичностью в расположении равновесных положений атомов. В аморфных телах атомы колеблются вокруг хаотически расположенных точек.

2.Что такое кристаллическая решётка?

Кристалли́ческая решётка - вспомогательный геометрический образ, вводимый для анализа строения кристалла. Решётка имеет сходство с канвой или сеткой, что даёт основание называть точки решётки узлами. Решёткой является совокупность точек (атомов), которые возникают из отдельной произвольно выбранной точки кристалла под действием группы трансляции. Это расположение замечательно тем, что относительно каждой точки все остальные расположены совершенно одинаково. Применение к решётке в целом любой из присущих ей трансляций приводит к её параллельному переносу и совмещению. Для удобства анализа обычно точки решётки совмещают с центрами каких-либо атомов из числа входящих в кристалл, либо с центрами молекул.

3.Что такое узлы кристаллической решётки?

Точки размещния частиц

называют узлами кристаллической решѐтки.

В зависимости от типа частиц, расположенных в

узлах кристаллической решѐтки, и характера

связи между ними различают 4 типа

кристаллических решѐток: ионные, атомные,

молекулярные, металлические.

4.Чем отличаются монокристаллы от поликристаллов?

Монокристалл - отдельный однородный кристалл, имеющий непрерывную кристаллическую решётку и характеризующийся анизотропией свойств

Поликристалл — агрегат мелких кристаллов какого-либо вещества, иногда называемых из-за неправильной формы кристаллитами или кристаллическими зёрнами.

5.Как можно классифицировать кристаллы?

Виды кристаллов

Следует разделить идеальный и реальный кристалл.

Идеальный кристалл- Является, по сути, математическим объектом, имеющим полную, свойственную ему симметрию, идеализированно ровные гладкие грани.

Реальный кристалл- Всегда содержит различные дефекты внутренней структуры решетки, искажения и неровности на гранях и имеет пониженную симметрию многогранника вследствие специфики условий роста, неоднородности питающей среды, повреждений и деформаций. Реальный кристалл не обязательно обладает кристаллографическими гранями и правильной формой, но у него сохраняется главное свойство - закономерное положение атомов в кристаллической решётке.

6.Что такое ионная связь?

Ионная связь, электровалентная связь, гетеровалентная связь, один из видов химической связи, в основе которого лежит электростатическое взаимодействие между противоположно заряженными ионами.

7.Что такое ковалентная связь?

Ковалентная связь, один из видов химической связи между двумя атомами, которая осуществляется общей для них электронной парой (по одному электрону от каждого атома). К. с. существует как в молекулах (в любых агрегатных состояниях), так и между атомами, образующими решетку кристалла.

8. Какие типы кристалл. систем Вы знаете?

В зависимости от пространственной симметрии, все кристаллические решётки подразделяются на семь кристаллических систем.

1. триклинная сингония - наименьшая симметрия, нет одинаковых углов, нет осей одинаковой длины;

2. моноклинная сингония - два прямых угла, нет осей одинаковой длины;

3. ромбическая сингония - три прямых угла (поэтому ортогонально), нет осей одинаковой длины;

4. гексагональная сингония - две оси одинаковой длины в одной плоскости под углом 120°, третья ось под прямым углом;

5. тетрагональная сингония - две оси одинаковой длины, три прямых угла;

6. тригональная сингония - три оси одинаковой длины и три равных угла, не равных 90°;

7. кубическая сингония - высшая степень симметрии, три оси одинаковой длины под прямым углом.

Кристаллические тела и их свойства

В твёрдых телах частицы (молекулы, атомы и ионы) расположены настолько близко друг к другу, что силы взаимодействия между ними не позволяют им разлетаться.

Эти частицы могут лишь совершать колебательные движения вокруг положения равновесия. Поэтому твёрдые тела сохраняют форму и объём.

По своей молекулярной структуре твёрдые тела разделяются на кристаллические и аморфные .

Строение кристаллических тел

Кристаллическая решётка

Кристаллическими называют такие твёрдые тела, молекулы, атомы или ионы в которых располагаются в строго определённом геометрическом порядке, образуя в пространстве структуру, которая называется кристаллической решёткой .

Этот порядок периодически повторяется по всем направлениям в трёхмерном пространстве. Он сохраняется на больших расстояниях и не ограничен в пространстве. Его называют дальним порядком .

Типы кристаллических решёток

Кристаллическая решётка — это математическая модель, с помощью которой можно представить, как расположены частицы в кристалле. Мысленно соединив в пространстве прямыми линиями точки, в которых расположены эти частицы, мы получим кристаллическую решётку.

Расстояние между атомами, расположенными в узлах этой решётки, называется параметром решётки .

В зависимости от того, какие частицы расположены в узлах, кристаллические решётки бывают молекулярные, атомные, ионные и металлические .

От типа кристаллической решётки зависят такие свойства кристаллических тел, как температура плавления, упругость, прочность.

При повышении температуры до значения, при котором начинается плавление твёрдого вещества, происходит разрушение кристаллической решётки.

Молекулы получают больше свободы, и твёрдое кристаллическое вещество переходит в жидкую стадию. Чем прочнее связи между молекулами, тем выше температура плавления.

Молекулярная решётка

В молекулярных решётках связи между молекулами не прочные. Поэтому при обычных условиях такие вещества находятся в жидком или газообразном состоянии.

Твёрдое состояние для них возможно только при низких температурах. Температура их плавления (перехода из твёрдого состояния в жидкое) также низкая. А при обычных условиях они находится в газообразном состоянии.

Примеры — иод (I2), «сухой лёд» (двуокись углерода СО2).

Атомная решётка

В веществах, имеющих атомную кристаллическую решётку, связи между атомами прочные.

Поэтому сами вещества очень твёрдые. Плавятся они при высокой температуре. Кристаллическую атомную решётку имеют кремний, германий, бор, кварц, оксиды некоторых металлов и самое твёрдое в природе вещество — алмаз.

Ионная решётка

К веществам с ионной кристаллической решёткой относятся щёлочи, большинство солей, оксиды типичных металлов.

Так как сила притяжения ионов очень велика, то эти вещества способны плавиться только при очень высокой температуре. Их называют тугоплавкими. Они обладают высокой прочностью и твёрдостью.

Металлическая решётка

В узлах металлической решётки, которую имеют все металлы и их сплавы, расположены и атомы, и ионы.

Благодаря такому строению металлы обладают хорошей ковкостью и пластичностью, высокой тепло- и электропроводностью.

Чаще всего форма кристалла — правильный многогранник.

Грани и рёбра таких многогранников всегда остаются постоянными для конкретного вещества.

Одиночный кристалл называют монокристаллом . Он имеет правильную геометрическую форму, непрерывную кристаллическую решётку.

Примеры природных монокристаллов — алмаз, рубин, горный хрусталь, каменная соль, исландский шпат, кварц. В искусственных условиях монокристаллы получают в процессе кристаллизации, когда охлаждая до определённой температуры растворы или расплавы, выделяют из них твёрдое вещество в форме кристаллов.

При медленной скорости кристаллизации огранка таких кристаллов имеет естественную форму. Таким способом в специальных промышленных условиях получают, например, монокристаллы полупроводников или диэлектриков.

Мелкие кристаллики, беспорядочно сросшиеся друг с другом, называются поликристаллами . Ярчайший пример поликристалла — камень гранит. Все металлы также являются поликристаллами.

Анизотропия кристаллических тел

В кристаллах частицы расположены с различной плотностью по разным направлениям.

Если мы соединим прямой линией атомы в одном из направлений кристаллической решётки, то расстояние между ними будет одинаковым на всём этом направлении. В любом другом направлении расстояние между атомами тоже постоянно, но его величина уже может отличаться от расстояния в предыдущем случае. Это означает, что на разных направлениях между атомами действуют разные по величине силы взаимодействия. Поэтому и физические свойства вещества по этим направлениям также будут отличаться.

Это явление называется анизотропией — зависимостью свойств вещества от направления.

Электропроводность, теплопроводность, упругость, показатель преломления и другие свойства кристаллического вещества различаются в зависимости от направления в кристалле. По-разному в разных направлениях проводится электрический ток, по-разному нагревается вещество, по-разному преломляются световые лучи.

В поликристаллах явление анизотропии не наблюдается.

Свойства вещества остаются одинаковыми по всем направлениям.

Характеристика твердых тел.

Молекулы (или атомы) расположены строго упорядоченно. Расстояние между молекулами ≈ диаметру молекулы. Атомы или молекулы твердых тел колеблются около определенных положений равновесия.

Поэтому твердые тела сохраняют не только объем, но и форму. Если соединить центры положений равновесия атомом или ионов твердого тела, то получится правильная пространственная решетка, называемая кристаллической.

Твердые тела, в которых атомы или молекулы располо-жены упорядочение и образуют периодически повторяющуюся внутреннюю структуру, назы-ваются кристаллами. Поэтому кристаллы имеют плоские грани (Крупинка поваренной соли имеет плоские грани, составляющие друг с другом прямые углы).

Физические свойства кристал-лических тел неодинаковы в различных направлениях, но совпадают в параллельных на-правлениях.

Анизотропия кристаллов – это зависимость физических свойств от выбранного в кристалле направления.

Например, различная механическая прочность кристаллов по разным направлениям (Кусок слюды легко расслаивается в одном направлении, но разорвать его в направлении перпендикулярном пластинкам гораздо сложнее). Многие кристаллы по — разному проводят теплоту и электрический ток в различных направлениях. От направления зависят и оптические свойства кристаллов. Например, кристаллы кварца и турмалина по – разному преломляют свет в зависимости от направления падающих на него лучей.

Кристалл поваренной соли при раскалывании дробится на части, ограниченные пло-скими поверхностями, пересе-кающимися под прямыми угла-ми.

Эти плоскости перпендику-лярны особым направлениям в образце, по этим направлениям его прочность минимальна.

Анизотропия механических, тепловых, электрических и оп-тических свойств кристаллов объ-ясняется тем, что при упоря-доченном расположении атомов, молекул или ионов силы взаи-модействия между ними и меж-атомные расстояния оказывают-ся неодинаковыми по различным направлениям.

Кристаллические тела делят-ся на монокристаллы и поли-кристаллы.

Монокристаллы это одиночные кристаллы имеют правильную геометрическую форму, и их свойства различны по разным направлениям (анизотропия).

Монокристаллы ино-гда обладают геометрически пра-вильной внешней формой, но главный признак монокристалла - периодически повторяю-щаяся внутренняя структура во всем его объеме.

Поликристал-лическое тело представляет собой совокупность сросшихся друг с другом хаотически ориентиро-ванных маленьких кристаллов - кристаллитов. Поликристалличе-скую структуру чугуна, напри-мер, можно обнаружить, если рассмотреть с помощью лупы образец на изломе. Каждый ма-ленький монокристалл поликри-сталлического тела анизотропен, но поликристаллическое тело изо-тропно.

Поликристаллы– это твердые тела состоящие из большого числа маленьких сросшихся кристалликов (металлы, кусок сахара).

Все направления внутри поликристаллов равноправны и свойства поликристаллов одинаковы по всем направлениям (изотропия).

Аморфными называются тела, физические свойства которых одинаковы по всем направле-ниям. Примерами аморфных тел могут служить куски затвердев-шей смолы, янтарь, изделия из стекла. Аморфные тела яв-ляются изотропными телами.

Изотропность физических свойств аморфных тел объясняется бес-порядочностью расположения со-ставляющих их атомов и моле-кул. У аморфных тел нет строгого порядка в расположении атомов, нет строгой повторяемости по всем направлениям одного и того же элемента структуры.

Определенной температуры плавления у аморфных тел в отличие от кристаллических нет.

Свойства аморфных тел. Все аморфные тела изотропны, т.е. их физические свойства по всем направлениям одинаковы (стекло, смола, пластмасса и т.д.).

При внешних воздействиях аморфные тела обнаруживают одновременно упругие свойства, подобно твердым телам, и текучесть, подобно жидкости (При сильном ударе кусок смолы раскалывается на кусочки, а при длительном нахождении смолы на твердой поверхности, смола постепенно растекается, и чем выше температура, тем быстрее это происходит.).

Тема 5.2 Механические свойства твердых тел. Виды деформаций. Упругость, прочность, пластичность, хрупкость. Закон Гука. Плавление и кристаллизация.

Внутреннее строение Земли и планет*

Деформацией твердого тела называется изменение формы или объема тела под действием внешних сил.

Виды деформации.

Упругие деформации это деформации, которые полностью исчезают после прекращения действия внешних сил (пружина, резиновый шнур) и тело восстанавливает свою первоначальную форму.

Пластические деформации это деформации, которые не исчезают после прекращения действия внешних сил (пластилин, глина, свинец) и тело не восстанавливает свою первоначальную форму.

Механическим напряжением называют отношение модуля силы упругости F к площади поперечного сечения S тела:

;

Закон Гука: при малых деформациях напряжение прямо пропорционально относительному удлинению .

Закон Гука выполняется при небольших деформациях (участок ОА диаграммы).

1) , где — модуль упругости или модуль Юнга (он характеризует сопротивляемость материала упругой деформации); — относительная деформация (относительное удлинение); — начальная длина, ∆l – абсолютное удлинение тела.

2) , где — коэффициент жесткости.

Диаграмма растяжения. (рис.) Для исследования деформации растяжения стержень при помощи специальных устройств подвергают растяжению, а затем измеряют удлинение образца и возникающее в нем напряжение. По результатам опытов вычерчивают график зависимости напряжения от относительного удлинения , получивший название диаграммы растяжения (рис.).

Участок ОА – пропорциональная деформация; — предел пропорциональности (максимальное напряжение, при котором еще выполняется закон Гука); если увеличивать нагрузку, то деформация становится нелинейной, но после снятия нагрузки форма и размеры тела практически восстанавливаются.

(Участок АВ- упругая деформация); — предел упругости; По мере увеличения нагрузки деформация нарастает все быстрее и при некотором значении напряжения, соответствующем на диаграмме точке С, удлинение нарастает практически без увеличения нагрузки.

Это явление называется текучестью материала (участок СD). Разрыв образца происходит после того, как напряжение достигает максимального значения , называемого пределом прочности (образец растягивается без увеличения внешней нагрузки вплоть до разрушения).

Похожая информация:

Поиск на сайте:

СТРОЕНИЕ И СВОЙСТВО ТВЕРДОГО ВЕЩЕСТВА

Теоретические сведения

Вещество может существовать в трех агрегатных состояниях: газообразном, жидком и твердом.

Плазму часто называют четвертым агрегатным состоянием. Зависимость свойств вещества от агрегатного состояния указана в табл. 33.

Таблица 1

Свойства веществ в разных агрегатных состояниях

Агрегатное состояние вещества определяется силами, действующими между молекулами, расстоянием между частицами и характером их движения.

В твердом состоянии частицы занимают определенное положение относительно друг друга.

Вещество обладает низкой сжимаемостью, механической прочностью, поскольку молекулы не имеют свободы движения, а только колебания. Молекулы, атомы или ионы, образующие твердое вещество, называют структурными единицами.

Твердые вещества делятся на аморфные и кристаллические
(табл.

34). Кристаллические вещества плавятся при строго определенной температуре Тпл, аморфные – не имеют резко выраженной температуры плавления; при нагревании они размягчаются (характеризуются интервалом размягчения) и переходят в жидкое или вязкотекучее состояние рис.

Таблица 2

Сравнительная характеристика аморфных и кристаллических веществ

18. Изменение объема веществ при нагревании: а – кристаллических; б – аморфных

Внутреннее строение аморфных веществ характеризуется беспорядочным расположением молекул(табл.

34). Кристаллическое состояние вещества предполагает правильное расположение в пространстве частиц, составляющих кристалл, и образованиемкристаллической (пространственной ) решетки Основной особенностью кристаллических тел является их анизотропия – неодинаковость свойств (тепло-, электропроводность, механическая прочность, скорость растворения и т.

д.) по разным направлениям, в то время как аморфные тела – изотропны . Твердые кристаллы – трехмерные образования, характеризующиеся строгой повторяемостью одного и того же элемента структуры (элементарной ячейки) во всех направлениях. Элементарная ячейка представляет собой наименьший объем кристалла в виде параллелепипеда, повторяющегося в кристалле бесконечное число раз. Задают элементарную ячейку с помощью осей и углов (рис. 19).

Существуют основные параметры кристаллических решеток.

Энергия кристаллической решетки Екр., кДж/моль, –это энергия, которая выделяется при образовании 1 моля кристалла из микрочастиц (атомы, молекулы, ионы), находящихся в газообразном состоянии и удаленных друг от друга на расстояние, исключающее их взаимодействие.

Константа кристаллической решетки d, –наименьшее расстояние между центром двух частиц в кристалле, соединенных химической связью.

Координационное число к.ч.

–число частиц, окружающих в пространстве центральную частицу, связанных с ней химической связью.

Точки, в которых размещены частицы кристалла, называются узлами кристаллической решетки

Несмотря на многообразие форм кристаллов, их можно строго и однозначно классифицировать. Систематизация форм кристаллов была введена русским академиком А.В. Гадолиным (1867), она основана на особенностях симметрии кристаллов. В соответствии с геометрической формой кристаллов возможны следующие их системы (сингонии): кубическая, тетрагональная, орторомбическая, моноклинная, триклинная, гексагональная и ромбоэдрическая (рис.

Рис. 20. Основные системы кристаллов

Одно и то же вещество может иметь различные кристаллические формы, которые отличаются по внутреннему строению, а значит, и по физико-химическим свойствам. Такое явление называется полиморфизмом .

Изоморфизм –два разных по природе вещества образуют кристаллы одинаковой структуры. Такие вещества могут замещать друг друга в кристаллической решетке, образуя смешанные кристаллы.

В зависимости от вида частиц, находящихся в узлах кристаллической решетки и типа связей между ними кристаллы бывают четырех типов: молекулярные, атомные, ионные и металлические (рис.


21. Виды кристаллов

Кристаллические решетки, состоящие из молекул (полярных и неполярных) называются молекулярными . Молекулы в таких кристаллических решетках соединены между собой сравнительно слабыми водородными, межмолекулярными и электростатическими силами. Поэтому вещества с молекулярной решеткой имеют малую твердость и низкие температуры плавления. Они малорастворимы в воде, не проводят электрический ток и обладают высокой летучестью.

Примерами веществ с молекулярными решетками являются лед, твердый углекислый газ («сухой лед»), твердые галогенводороды, твердые простые вещества, образованные одно- (благородные газы), двух- (F2, Cl2, Br2, J2, H2, N2,O2), трех- (O3), четырех- (P4), восьми- (S8) атомными молекулами.

Большинство кристаллических органических соединений также имеют молекулярную решетку.

Кристаллические решетки, в узлах которых находятся отдельные атомы, называют атомными (ковалентными) .

Атомы в таких решетках соединены между собой прочными ковалентными связями.

Примером кристалла с атомной кристаллической решеткой может служить алмаз (рис. 21) – одна из модификаций углерода. Данный кристалл состоит из атомов углерода, каждый из которых связан с четырьмя соседними атомами (к.ч. = 4).

Число веществ с атомной кристаллической решеткой велико.

Все они имеют высокую температуру плавления, не растворимы в жидкостях, обладают высокой прочностью, твердостью, имеют широкий диапазон электропроводимости (от изоляторов и полупроводников до электронных проводников). Атомная кристаллическая решетка характерна для элементов III и IV групп главных подгрупп (Si, Ge, B, C).

Кристаллические решетки, состоящие из ионов, называются ионными . Их образуют вещества с ионной связью. Примером образования ионной кристаллической решетки может служить кристалл хлорида натрия (NaCl ) (рис.

21). Вещества с ионной кристаллической решеткой обладают высокой твердостью, хрупкостью, являются тугоплавкими и малолетучими. Плавление ионных кристаллов приводит к нарушению геометрически правильной ориентации ионов относительно друг друга и ослаблению прочности связи между ними. Поэтому расплавы, растворы таких кристаллов проводят электрический ток. Вещества с ионными кристаллическими решетками легко растворяются в полярных жидкостях, являются диэлектриками.

Ионные кристаллические решетки образуют многие соли, оксиды, основания.

Кристаллическая решетка, состоящая из атомов и ионов металлов, соединенных металлической связью (рис. 21), называется металлической .

Металлическая решетка является, как правило, весьма прочной. Этим объясняются свойственные большинству металлов твердость, малая летучесть, высокая температура плавления и кипения.

Она же обусловливает такие характерные свойства металлов как электро- и теплопроводность, блеск, ковкость, пластичность, непрозрачность, фотоэффект. Металлической кристаллической решеткой обладают чистые металлы и сплавы.

Кристаллические и аморфные тела

Цель урока:

    Раскрыть основные свойства кристаллических и аморфных тел.

    Познакомить учащихся с правильной формой кристаллов и со свойством анизотропии, методом моделирования в изучении свойств кристаллов.

Оборудование:

    Набор кристаллических тел; линза короткофокусная.

    Спиртовка, стеклянная палочка.

    Компьютер с мультимедийным проектором; план-конспект урока, мультимедийное приложение к уроку, выполненное в Mikrosoft Point .

Ход урока

Вступление: Большинство окружающих нас твердых тел представляют собой вещества в кристаллическом состоянии. К ним относятся строительные и конструкционные материалы: различные марки стали, всевозможные металлические сплавы, минералы и т. д. Специальная область физики-физика твердого тела - занимается изучением строения и свойств твердых тел. Эта область физики является ведущей во всех физических исследованиях. Она составляет фундамент современной техники.

В любой отрасли техники используются свойства твердого тела: механические, тепловые, электрические, оптические и т. д. Все большее применение в технике находят кристаллы. Вы, наверное, знаете о заслугах советских ученых - академиков, лауреатов Ленинской и Нобелевской премий А. М. Прохорова и Н Г Басова в создании квантовых генераторов. Действие современных оптических квантовых генераторов - лазеров - основано на использовании свойств монокристаллов (рубина и др.) Как устроен кристалл? Почему многие кристаллы обладают удивительными свойствами? Каковы особенности структуры кристаллов, которые отличают их от аморфных тел? Ответы на эти и аналогичные вопросы вы сможете дать в конце урока. Запишем тему “Кристаллические и аморфные тела”.

Изложение нового материала:

Обратимся к пройденному материалу. Какими свойствами обладают твёрдые тела?

Ученик:

1) Они сохраняют форму и объём.

2) В строении имеют кристаллическую решётку.

Учитель: Все твёрдые тела делятся на кристаллические и аморфные. Мы рассмотрим, в чём их сходство и различие.

Что такое кристаллы?

Кристаллы - это твёрдые тела, атомы или молекулы которых занимают определённые, упорядоченные положения в пространстве. Кристаллы одного и того же вещества имеют разнообразную форму. Углы между отдельными гранями кристаллов одинаковы. Некоторые формы кристаллов симметричны. Цвет кристаллов различен, - очевидно, это зависит от примесей.

Для наглядного представления внутренней структуры кристалла используют его изображение с помощью кристаллической решётки. Различают несколько типов кристаллов:

1) ионные

2) атомные

3) металлические

4) молекулярные.

Идеальная форма кристалла имеет вид многогранника. Такой кристалл ограничен плоскими гранями, прямыми ребрами и обладает симметрией. В кристаллах можно найти различные элементы симметрии. Кристаллические тела делятся на монокристаллы и поликристаллы.

Монокристаллы - одиночные кристаллы (кварц, слюда…) Идеальная форма кристалла имеет вид многогранника. Такой кристалл ограничен плоскими гранями, прямыми ребрами и обладает симметрией. В кристаллах можно найти различные элементы симметрии. Плоскость симметрии, ось симметрии, центр симметрии. На первый взгляд кажется, что число видов симметрии может быть бесконечно большим. В 1867 г. русский инженер А. В. Гадолин впервые доказал, что кристаллы могут обладать лишь 32 видами симметрии. Убедимся в симметрии кристаллика снега - снежинки

Симметрия кристаллов и другие их свойства, о которых мы будем говорить далее, привели к важной догадке о закономерностях в расположении частиц, составляющих кристалл. Может кто-нибудь из вас попытается ее сформулировать?

Ученик. Частицы в кристалле располагаются так, что они образуют определенную правильную форму, решетку.

Учитель. Частицы в кристалле образуют правильную пространственную решетку. Пространственные решетки различных кристаллов различны. Перед вами модель пространственной решетки поваренной соли. (Демонстрирует модель.) Шарики одного цвета имитируют ионы натрия, шарики другого цвета - ионы хлора. Если соединить эти узлы прямыми линиями, то образуется пространственная решетка, аналогичная представленной модели. В каждой пространственной решетке можно выделить некоторые повторяющиеся элементы ее структуры, иначе говоря, элементарную ячейку.

Понятие о пространственной решетке позволило объяснить свойства кристаллов.

Рассмотрим их свойства.

1) Внешняя правильная геометрическая форма (модели)

2) Постоянная температура плавления.

3) Анизотропия – различие в физических свойствах от выбранного в кристалле направления (показывает пример со слюдой, с кристаллом кварца)

Но монокристаллы в природе встречаются редко. Но такой кристалл можно вырастить в искусственных условиях.

А сейчас познакомимся с поликристаллами.

Поликристаллы - это твёрдые тела, состоящие из большого числа кристаллов, беспорядочно ориентированных друг относительно друга (сталь, чугун …)

Поликристаллы тоже имеют правильную форму и ровные грани, температура плавления у них имеет постоянное значение для каждого вещества. Но в отличие от монокристаллов, поликристаллы изотропны, т.е. физические свойства одинаковые по всем направлениям. Это объясняется тем, что кристаллы внутри располагаются беспорядочно, и каждый в отдельности обладает анизотропией, а в целом кристалл изотропен.

Кроме кристаллических тел существуют - аморфные тела.

Аморфные тела - это твёрдые тела, где сохраняется только ближний порядок в расположении атомов. (Кремнезём, смола, стекло, канифоль, сахарный леденец).

Например, кварц может находиться как в кристаллическом состоянии, так и аморфном - кремнезём. (См. рис в учебнике). Они не имеют постоянной температуры плавления и обладают текучестью (показывает сгибание стеклянной палочки над спиртовкой). Аморфные тела изотропны, при низких температурах они ведут себя подобно кристаллическим телам, а при высокой подобны жидкостям.

Наблюдение кристаллических и аморфных тел

(делают записи в тетрадь)

    Рассматриваем с помощью лупы кристаллики поваренной соли. - Какую форму они имеют? (форма кубиков).

    Рассмотрим кристаллы медного купороса. – Какова особенность данных кристаллов? (некоторые имеют плоские грани).

    Рассмотрим излом цинка и найдем на нем грани мелких кристалликов.

    Рассмотрим аморфные тела: стекло, канифоль или воск. Обратим внимание на излом стекла. В чем отличие от излома металла? (гладкая поверхность с острыми краями).

Задачи для самостоятельной работы.

1. Почему в мороз снег скрипит под ногами?

Ответ : Ломаются сотни тысяч снежинок – кристаллов.

2. Каково происхождение узоров на поверхности оцинкованного железа?

Ответ : Узоры появляются вследствие кристаллизации цинка.

3. Итоговый тест.

Учитель: Откройте дневники и запишите задание на дом: § 75,76(1); § 24, 26,27. Задание для желающих: вырастить кристаллы из раствора медного купороса или квасцов.

Литература:

1. Мякишев Г.Я., Буховцев Б.Б., Сотский Н.Н. Физика 10 кл. – М.: Просвещение 1992.

2. Пинский А.А. Физика 10 кл. – М. “Просвещение” 1993г.

3. Тарасов Л. В. Этот удивительно симметричный мир. - М.: Просвещение, 1982.

4. Школьникам о современной физике: физика сложных систем. - М.: Просвещение, 1978.

5. Энциклопедический словарь юного физика.

6. В.Г. Разумовский, Л.С. Хижнякова. Современный урок физики в средней школе. – М.: Просвещение, 1983.

7. Методика преподавания физики в 8–10 классах средней школы. Ч. 2/ Под ред. В.П. Орехова, А.В. Усовой и др. – М.: Просвещение 1980.

8. В.А.Волков. Поурочные разработки по физике. М. “ВАКО” 2006г.

Итоговый тест

1. Закончите предложение.

1) монокристаллы;

2) поликристаллы.

а) одиночные кристаллы;

1) крупинка соли;

3) крупинка сахара;

4) кусочек сахара-рафинада

в) аморфное состояние.

1) кристаллические тела;

2) аморфные тела.

Итоговый тест

1. Закончите предложение.

«Зависимость физических свойств от направления внутри кристалла называется …»

2. Вставьте пропущенные слова.

«Твердые тела подразделяются на … и … »

3. Найдите соответствие между твердыми телами и кристаллами.

1) монокристаллы;

2) поликристаллы.

а) одиночные кристаллы;

б) большое число маленьких кристалликов.

4. Найдите соответствие между веществом и его состоянием.

1) крупинка соли;

3) крупинка сахара;

4) кусочек сахара-рафинада

а) поликристаллическое состояние;

б) монокристаллическое состояние;

в) аморфное состояние.

5. Найдите соответствие между телами и температурой плавления.

1) кристаллические тела;

2) аморфные тела.

а) определенной температуры плавления нет;

б) температуры плавления постоянная.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

Глава 1. Кристаллические и аморфные тела

1.1 Идеальные кристаллы

1.2 Монокристаллы и кристаллические агрегаты

1.3 Поликристаллы

Глава 2. Элементы симметрии кристаллов

Глава 3. Типы дефектов в твёрдых телах

3.1 Точечные дефекты

3.2 Линейные дефекты

3.3 Поверхностные дефекты

3.4 Объёмные дефекты

Глава 4. Получение кристаллов

Глава 5. Свойства кристаллов

Заключение

Список используемой литературы

Введение

Кристаллы одни из самых красивых и загадочных творений природы. В настоящее время изучением многообразия кристаллов занимается наука кристаллография. Она выявляет признаки единства в этом многообразии, исследует свойства и строение, как одиночных кристаллов, так и кристаллических агрегатов. Кристаллография является наукой, всесторонне изучающей кристаллическое вещество. Данная работа также посвящена кристаллам и их свойствам.

В настоящее время кристаллы имеют большое распространение в науке и техники, так как обладают особыми свойствами. Такие области использования кристаллов, как полупроводники, сверхпроводники, квантовая электроника и многие другие требуют глубокого понимания зависимости физических свойств кристаллов от их химического состава и строения.

В настоящее время известны способы искусственного выращивания кристаллов. Кристалл можно вырастить в обыкновенном стакане, для этого требуется лишь определенный раствор и аккуратность, с которой необходимо ухаживать за растущим кристаллом.

Кристаллов в природе существует великое множество и так же много существует различных форм кристаллов. В реальности, практически невозможно привести определение, которое подходило бы ко всем кристаллам. Здесь на помощь можно привлечь результаты рентгеновского анализа кристаллов. Рентгеновские лучи дают возможность как бы нащупать атомы внутри кристаллического тела, и определяет их пространственное расположение. В результате было установлено, что решительно все кристаллы построены из элементарных частиц, расположенных в строгом порядке внутри кристаллического тела.

Во всех без исключения кристаллических постройках из атомов можно выделить множество одинаковых атомов, расположенных наподобие узлов пространственной решетки. Чтобы представить такую решетку, мысленно заполним пространство множеством равных параллелепипедов, параллельно ориентированных и соприкасающихся по целым граням. Простейший пример такой постройки представляет собой кладка из одинаковых кирпичиков. Если внутри кирпичиков выделить соответственные точки, например, их центры или вершины, то мы и получим модель пространственной решетки. Для всех без исключения кристаллических тел характерно решетчатое строение.

Кристаллами называются "все твердые тела, в которых слагающие их частицы (атомы, ионы, молекулы) расположены строго закономерно наподобие узлов пространственных решеток ". Это определения является максимально приближенным к истине, оно подходит к любым однородным кристаллическим телам: и булям (форма кристалла, у которого нет ни граней, ни ребер, ни выступающих вершин), и зернам, и плоскогранным фигурам.

Глава 1. Кристаллические и аморфные тела

По своим физическим свойствам и молекулярной структуре твердые тела разделяются на два класса - аморфные и кристаллические тела.

Характерной особенностью аморфных тел является их изотропность, т.е. независимость всех физических свойств (механических, оптических и т. д.) от направления. Молекулы и атомы в изотропных твердых телах располагаются хаотично, образуя лишь небольшие локальные группы, содержащие несколько частиц (ближний порядок). По своей структуре аморфные тела очень близки к жидкостям.

Примерами аморфных тел могут служить стекло, различные затвердевшие смолы (янтарь), пластики и т.д. Если аморфное тело нагревать, то оно постепенно размягчается, и переход в жидкое состояние занимает значительный интервал температур.

В кристаллических телах частицы располагаются в строгом порядке, образуя пространственные периодически повторяющиеся структуры во всем объеме тела. Для наглядного представления таких структур используются пространственные кристаллические решетки , в узлах которых располагаются центры атомов или молекул данного вещества.

В каждой пространственной решетке можно выделить структурный элемент минимального размера, который называется элементарной ячейкой .

Рис. 1. Типы кристаллических решёток: 1 - простая кубическая решетка; 2 - гранецентрированная кубическая решетка; 3 - объемно-центрированная кубическая решетка; 4 - гексагональная решетка

В простой кубической решетке частицы располагаются в вершинах куба. В гранецентрированной решетке частицы располагаются не только в вершинах куба, но и в центрах каждой его грани. В объемно-центрированной кубической решетке дополнительная частица располагается в центре каждой элементарной кубической ячейки.

Следует помнить, что частицы в кристаллах плотно упакованы, так что расстояние между их центрами приблизительно равно размеру частиц. В изображении кристаллических решеток указывается только положение центров частиц.

1. 1 Идеальные кристаллы

Правильная геометрическая форма кристаллов привлекала внимание исследователей ещё на ранних стадиях развития кристаллографии и давала повод к созданию тех или иных гипотез об их внутреннем строении.

Если мы будем рассматривать идеальный кристалл, то не обнаружим в нём нарушений, все одинаковые частицы расположены одинаковыми параллельными рядами. Если приложить к произвольной точке три не лежащие в одной плоскости элементарные трансляции и повторить её бесконечно в пространстве, то получится пространственная решетка, т.е. трёхмерная система эквивалентных узлов. Таким образом, в идеальном кристалле расположение материальных частиц характеризуется строгой трёхмерной периодичностью. И чтобы получить наглядное представление о закономерностях, связанных с геометрически правильным внутренним строением кристаллов, на лабораторных занятиях по кристаллографии обычно используют модели идеально образованных кристаллов в виде выпуклых многогранников с плоскими гранями и прямыми рёбрами. На самом же деле грани реальных кристаллов не бывают идеально плоскими, так как при своём росте они покрываются бугорками, шероховатостями, бороздками, ямками роста, вициналями (гранями, отклонившимися целиком или частично от своего идеального положения), спиралями роста или растворения и т.д.

Идеальный кристалл - это физическая модель, представляющая собой бесконечный монокристалл, не содержащий примесей или структурных дефектов. Отличие реальных кристаллов от идеальных связано с конечностью их размеров и наличием дефектов. Наличия некоторых дефектов (например, примесей, межкристаллитных границ) в реальных кристаллах можно практически полностью избежать с помощью специальных методов выращивания, отжига или очистки. Однако при температуре T>0К в кристаллах всегда есть конечная концентрация (термоактивированных) вакансий и межузельных атомов, число которых в равновесии экспоненциально убывает с понижением температуры.

Кристаллические вещества могут существовать в виде монокристаллов или поликристаллических образцов.

Монокристалл - это твердое тело, в котором регулярная структура охватывает весь объем вещества. Монокристаллы встречаются в природе (кварц, алмаз, изумруд) или изготовляются искусственно (рубин).

Поликристаллические образцы состоят из большого количества мелких, хаотически ориентированных, разного размера кристалликов, которые могут быть связаны между собой определенными силами взаимодействия.

1. 2 Монокрист аллы и кристаллические агрегаты

Монокристалл - отдельный однородный кристалл, имеющий непрерывную кристаллическую решётку и иногда имеющий анизотропию физических свойств. Внешняя форма монокристалла обусловлена его атомно-кристаллической решёткой и условиями (в основном скоростью и однородностью) кристаллизации. Медленно выращенный монокристалл почти всегда приобретает хорошо выраженную естественную огранку, в неравновесных условиях (средняя скорость роста) кристаллизации огранка проявляется слабо. При ещё большей скорости кристаллизации вместо монокристалла образуются однородные поликристаллы и поликристаллические агрегаты, состоящие из множества различно ориентированных мелких монокристаллов. Примерами огранённых природных монокристаллов могут служить монокристаллы кварца, каменной соли, исландского шпата, алмаза, топаза. Большое промышленное значение имеют монокристаллы полупроводниковых и диэлектрических материалов, выращиваемые в специальных условиях. В частности, монокристаллы кремния и искусственных сплавов элементов III (третьей) группы с элементами V (пятой) группы таблицы Менделеева (например, GaAs Арсенид галлия) являются основой современной твердотельной электроники. Монокристаллы металлов и их сплавов не обладают особыми свойствами и практически не применяются. Монокристаллы сверхчистых веществ обладают одинаковыми свойствами независимо от способа их получения. Кристаллизация происходит вблизи температуры плавления (конденсации) из газообразного (например, иней и снежинки), жидкого (наиболее часто) и твёрдого аморфного состояний с выделением тепла. Кристаллизация из газа или жидкости обладает мощным очищающим механизмом: химический состав медленно выращенных монокристаллов практически идеален. Почти все загрязнения остаются (накапливаются) в жидкости или газе. Это происходит потому, что при росте кристаллической решётки происходит самопроизвольный подбор нужных атомов (молекул для молекулярных кристаллов) не только по их химическим свойствам (валентности), а также по размеру.

Современной технике уже не хватает небогатого набора свойств естественных кристаллов (особенно для создания полупроводниковых лазеров), и учёные придумали метод создания кристаллоподобных веществ с промежуточными свойствами, путём выращивания чередующихся сверхтонких слоёв кристаллов с похожими параметрами кристаллических решёток.

В отличие от других агрегатных состояний, кристаллическое состояние многообразно. Одни и те же по составу молекулы могут быть упакованы в кристаллах разными способами. От способа же упаковки зависят физические и химические свойства вещества. Таким образом одни и те же по химическому составу вещества на самом деле часто обладают различными физическим свойствами. Для жидкого состояния такое многообразие не характерно, а для газообразного - невозможно.

Если взять, например, обычную поваренную соль, то легко увидеть даже без микроскопа отдельные кристаллики.

Если мы хотим подчеркнуть, что имеем дело с одиночным, отдельным кристаллом, то называем его монокристаллом, чтобы подчеркнуть, что речь идет о скоплении многих кристаллов, используется термин кристаллический агрегат . Если в кристаллическом агрегате отдельные кристаллы почти не огранены, это может объяснятся тем, что кристаллизация началась одновременно во многих точках вещества и скорость ее была достаточно высока. Растущие кристаллы являются препятствием друг другу и мешают правильному огранению каждого из них.

В данной работе речь пойдет в основном о монокристаллах, а так как они являются составными частями кристаллических агрегатов, то их свойства будут схожи со свойствами агрегатов.

1. 3 Поликристаллы

Поликристалл - агрегат мелких кристаллов какого-либо вещества, иногда называемых из-за неправильной формы кристаллитами или кристаллическими зёрнами. Многие материалы естественного и искусственного происхождения (минералы, металлы, сплавы, керамики и т. д.) являются поликристаллами.

Свойства и получение . Свойства поликристаллов обусловлены свойствами составляющих его кристаллических зёрен, их средним размером, который колеблется от 1-2 мкм до нескольких миллиметров (в некоторых случаях до нескольких метров), кристаллографической ориентацией зёрен и строением межзёренных границ. Если зёрна ориентированы хаотически, а их размеры малы по сравнению с размером поликристалла, то в поликристалле не проявляется анизотропия физических свойств, характерная для монокристаллов. Если в поликристалле есть преимущественная кристаллографическая ориентация зёрен, то поликристалл является текстурированным и, в этом случае, обладает анизотропией свойств. Наличие границ зёрен существенно сказывается на физических, особенно механических, свойствах поликристаллов, так как на границах происходит рассеяние электронов проводимости, фононов, торможение дислокаций и др.

Поликристаллы образуются при кристаллизации, полиморфных превращениях и в результате спекания кристаллических порошков. Поликристалл менее стабилен, чем монокристалл, поэтому при длительном отжиге поликристалла происходит рекристаллизация (преимущественный рост отдельных зёрен за счёт других), приводящая к образованию крупных кристаллических блоков.

Глава 2 . Элементы симметрии кристаллов

Понятия симметрии и асимметрии фигурируют в науке с древнейших времен скорее в качестве эстетического критерия, чем строго научных определений. До появления идеи симметрии математика, физика, естествознание в целом напоминали отдельные островки безнадежно изолированных друг от друга и даже противоречивых представлений, теорий, законов. Симметрия характеризует и знаменует собой эпоху синтеза, когда разрозненные фрагменты научного знания сливаются в единую, целостную картину мира. В качестве одной из основных тенденций этого процесса выступает математизация научного знания.

Симметрию принято рассматривать не только как основополагающую картину научного знания, устанавливающую внутренние связи между системами, теориями, законами и понятиями, но и относить ее к атрибутам таким же фундаментальным, как пространство и время, движение. В этом смысле симметрия определяет структуру материального мира, всех его составляющих. Симметрия обладает многоплановым и многоуровневым характером. Например, в системе физических знаний симметрия рассматривается на уровне явлений, законов, описывающих эти явления, и принципов, лежащих в основе этих законов, а в математике - при описании геометрических объектов. Симметрия может быть классифицирована как:

· структурная;

· геометрическая;

· динамическая, описывающая соответственно кристаллографический,

математический и физический аспекты данного понятия.

Простейшие симметрии представимы геометрически в нашем обычном трехмерном пространстве и потому наглядны. Такие симметрии связаны с геометрическими операциями, которые приводят рассматриваемое тело к совпадению с самим собой. Говорят, что симметрия проявляется в неизменности (инвариантности) тела или системы по отношению к определенной операции. Например, сфера (без каких-либо меток на ее поверхности) инвариантна относительно любого поворота. В этом проявляется ее симметричность. Сфера с меткой, например, в виде точки, совпадает сама с собой лишь при повороте, после которого в исходное положение попадает метка на ней. Наше трехмерное пространство изотропно. Это означает, что как и сфера без меток, оно совпадает с самим собой при любом повороте. Пространство неразрывно связано с материей. Поэтому наша Вселенная также изотропна. Пространство кроме того однородно. Это означает, что оно (и наша Вселенная) обладает симметрией относительно операции сдвига. Той же симметрией обладает и время.

Кроме простых (геометрических) симметрий в физике широко встречаются весьма сложные, так называемые динамические симметрии, то есть симметрии, связанные не с пространством и временем, а с определенным типом взаимодействий. Они не являются наглядными, и даже простейшие из них, например, так называемые калибровочные симметрии , затруднительно пояснить без использования довольно сложной физической теории. Калибровочным симметриям в физике также отвечают некоторые законы сохранения. Например, калибровочная симметрия электромагнитных потенциалов приводит к закону сохранения электрического заряда.

В ходе общественной практики человечество накопило много фактов, свидетельствующих как о строгой упорядоченности, равновесии между частями целого, так и о нарушениях этой упорядоченности. В этой связи можно выделить следующие пять категорий симметрии:

· симметрия;

· асимметрия;

· дисимметрия;

· антисимметрия;

· суперсимметрия.

Асимметрия . Асимметрия - это несимметрия, т.е. такое состояние, когда симметрия отсутствует. Но еще Кант говорил, что отрицание никогда не является простым исключением или отсутствием соответствующего положительного содержания. Например, движение - это отрицание своего предыдущего состояния, изменение объекта. Движение отрицает покой, но покой не есть отсутствие движения, так как очень мало информации и эта информация ошибочна. Отсутствия покоя, как и движения, не бывает, поскольку это две стороны одной и той же сущности. Покой - это другой аспект движения.

Полного отсутствия симметрии также не бывает. Фигура, не имеющая элемента симметрии, называется асимметричной. Но, строго говоря, это не так. В случае асимметричных фигур расстройство симметрии просто доведено до конца, но не до полного отсутствия симметрии, так как эти фигуры еще характеризуются бесконечным числом осей первого порядка, которые также являются элементами симметрии.

Асимметрия связана с отсутствием у объекта всех элементов симметрии. Такой элемент неделим на части. Примером является рука человека. Асимметрия - это категория, противоположная симметрии, которая отражает существующие в объективном мире нарушения равновесия, связанные с изменением, развитием, перестройкой частей целого. Так же, как мы говорим о движении, имея в виду единство движения и покоя, так же симметрия и асимметрия - две полярные противоположности объективного мира. В реальной природе нет чистых симметрии и асимметрии. Они всегда находятся в единстве и непрерывной борьбе.

На разном уровне развития материи присутствует то симметрия (относительный порядок), то асимметрия (тенденция нарушения покоя, движение, развитие), но всегда эти две тенденции едины и их борьба абсолютна. Реальные, даже самые совершенные кристаллы далеки по своей структуре от кристаллов идеальной формы и идеальной симметрии, рассматриваемой в кристаллографии. В них имеются существенные отступления от идеальной симметрии. Они имеют и элементы асимметрии: дислокации, вакансии, оказывающие влияние на их физические свойства.

Определения симметрии и асимметрии указывают на универсальный, общий характер симметрии и асимметрии как свойств материального мира. Анализ понятия симметрии в физике и математике (за редким исключением) имеет тенденцию к абсолютизации симметрии и трактовке асимметрии как отсутствия симметрии и порядка. Антипод симметрии выступает как понятие чисто негативное, но заслуживающее внимания. Значительный интерес к асимметрии возник в середине XIX века в связи с опытами Л. Пастера по изучению и разделению стереоизомеров.

Дисимметрия . Дисимметрией называется внутренняя, или расстроенная, симметрия, т.е. отсутствие у объекта некоторых элементов симметрии. Например, у рек, текущих вдоль земных меридианов, один берег выше другого (в Северном полушарии правый берег выше левого, а в Южном - наоборот). По Пастеру, дисимметричной является та фигура, которая не совмещается простым наложением со своим зеркальным отражением. Величина симметрии дисимметричного объекта может быть сколь угодно высокой. Дисимметрию в самом широком смысле ее понимания можно было бы определить как любую форму приближения от бесконечно симметричного объекта к бесконечно асимметричному.

Антисимметрия . Антисимметрией называется противоположная симметрия, или симметрия противоположностей. Она связана с переменой знака фигуры: частицы - античастицы, выпуклость - вогнутость, черное - белое, растяжение - сжатие, вперед - назад и т.д. Это понятие можно объяснить примером с двумя парами черно-белых перчаток. Если из куска кожи, две стороны которой окрашены соответственно в белый и черный цвета, сшить две пары черно-белых перчаток, то их можно различать по признаку правизны - левизны, по цвету - черноты и белизны, иначе говоря, по признаку знакоинформатизма и некоторому другому знаку. Операция антисимметрии состоит из обыкновенных операций симметрии, сопровождаемых переменой второго признака фигуры.

Суперсимметрия В последние десятилетия XX века стала развиваться модель суперсимметрии, которая была предложена российскими теоретиками Гельфандом и Лихтманом. Упрощенно говоря, их идея состояла в том, что, подобно тому как существуют обычные размерности пространства и времени, должны иметься экстра-размерности, которые можно измерить в так называемых числах Грассмана. Как говорил С. Хокинг, даже научные фантасты не додумались до чего-нибудь столь же странного, как размерности Грассмана. В нашей обычной арифметике, если число 4 умножить на 6, - это то же самое, что 6 умножить на 4. Но странность чисел Грассмана состоит в том, что если X умножить на Y, то это равно минус Y умножить на X. Чувствуете, как это далеко от наших классических представлений о природе и методах ее описания?

Симметрию можно рассматривать и по формам движения или так называемым операциями симметрии. Можно выделить следующие операции симметрии:

· отражение в плоскости симметрии (отражение в зеркале);

· поворот вокруг оси симметрии (поворотная симметрия );

· отражение в центре симметрии (инверсия);

· перенос (трансляция ) фигуры на расстояние;

· винтовые повороты;

· перестановочная симметрия.

Отражение в плоскости симметрии . Отражение - это наиболее известная и чаще других встречающаяся в природе разновидность симметрии. Зеркало в точности воспроизводит то, что оно "видит", но рассмотренный порядок является обращенным: правая рука у вашего двойника в действительности окажется левой, так как пальцы расположены на ней в обратном порядке. Всем, наверное, с детства знаком фильм "Королевство кривых зеркал", где имена всех героев читались в обратном порядке. Зеркальную симметрию можно обнаружить повсюду: в листьях и цветах растений, архитектуре, орнаментах. Человеческое тело, если говорить лишь о наружном виде, обладает зеркальной симметрией, хотя и не вполне строгой. Более того, зеркальная симметрия присуща телам почти всех живых существ, и такое совпадение отнюдь не случайно. Важность понятия зеркальной симметрии вряд ли можно переоценить.

Зеркальной симметрией обладает все, допускающее разбиение на две зеркально равные половинки. Каждая из половинок служит зеркальным отражением другой, а разделяющая их плоскость называется плоскостью зеркального отражения, или просто зеркальной плоскостью. Эту плоскость можно назвать элементом симметрии, а соответствующую операцию - операцией симметрии. С трехмерными симметричными узорами мы сталкиваемся ежедневно: это многие современные жилые здания, а иногда и целые кварталы, ящики и коробки, громоздящиеся на складах, атомы вещества в кристаллическом состоянии образуют кристаллическую решетку - элемент трехмерной симметрии. Во всех этих случаях правильное расположение позволяет экономно использовать пространство и обеспечивать устойчивость.

Замечательным примером зеркальной симметрии в литературе является фраза-"перевертыш": "А роза упала на лапу Азора". В этой строке центром зеркальной симметрии является буква "н", относительно которой все остальные буквы (не учитывая пропуски между словами) расположены во взаимно противоположной очередности.

Поворотная симметрия . Внешний вид узора не изменится, если его повернуть на некоторый угол вокруг оси. Симметрия, возникающая при этом, называется поворотной симметрией. Примером может служить детская игра "вертушка" с поворотной симметрией. Во многих танцах фигуры основаны на вращательных движениях, нередко совершаемых только в одну сторону (т.е. без отражения), например, хороводы.

Листья и цветы многих растений обнаруживают радиальную симметрию. Это такая симметрия, при которой лист или цветок, поворачиваясь вокруг оси симметрии, переходит в себя. На поперечных сечениях тканей, образующих корень или стебель растения, отчетливо бывает видна радиальная симметрия. Соцветия многих цветков также обладают радиальной симметрией.

Отражение в центре симметрии . Примером объекта наивысшей симметрии, характеризующим эту операцию симметрии, является шар. Шаровые формы распространены в природе достаточно широко. Они обычны в атмосфере (капли тумана, облака), гидросфере (различные микроорганизмы), литосфере и космосе. Шаровую форму имеют споры и пыльца растений, капли воды, выпущенной в состоянии невесомости на космическом корабле. На метагалактическом уровне наиболее крупными шаровыми структурами являются галактики шаровой формы. Чем плотнее скопление галактик, тем ближе оно к шаровой форме. Звездные скопления - тоже шаровые формы.

Трансляция, или перенос фигуры на расстояние . Трансляция, или параллельный перенос фигуры на расстояние - это любой неограниченно повторяющийся узор. Она может быть одномерной, двумерной, трехмерной. Трансляция в одном и том же или противоположных направлениях образует одномерный узор. Трансляция по двум непараллельным направлениям образует двумерный узор. Паркетные полы, узоры на обоях, кружевные ленты, дорожки, вымощенные кирпичом или плитками, кристаллические фигуры образуют узоры, которые не имеют естественных границ. При изучении орнаментов, используемых в книгопечатании, были обнаружены те же элементы симметрии, что и в рисунке выложенных кафельными плитами полов. Орнаментальные бордюры связаны с музыкой. В музыке элементы симметричной конструкции включают в себя операции повторения (трансляции) и обращения (отражения). Именно эти элементы симметрии обнаруживаются и в бордюрах. Хотя в большинстве случаев музыка не отличается строгой симметрией, в основе многих музыкальных произведений лежат операции симметрии. Особенно заметны они в детских песенках, которые, видимо, поэтому так легко и запоминаются. Операции симметрии обнаруживаются в музыке средневековья и Возрождения, в музыке эпохи барокко (нередко в весьма изощренной форме). Во времена И.С. Баха, когда симметрия была важным принципом композиции, широкое распространение получила своеобразная игра в музыкальные головоломки. Одна из них заключалась в решении загадочных "канонов". Канон - это одна из форм многоголосной музыки, основанной на проведении темы, которую ведет один голос, в других голосах. Композитор предлагал какую-нибудь тему, а слушателям требовалось угадать операции симметрии, которые он намеревался использовать при повторении темы.

Природа задает головоломки как бы противоположного типа: нам предлагается завершенный канон, а мы должны отыскать правила и мотивы, лежащие в основе существующих узоров и симметрии, и наоборот, отыскивать узоры, возникающие при повторении мотива по разным правилам. Первый подход приводит к изучению структуры вещества, искусства, музыки, мышления. Второй подход ставит нас перед проблемой замысла или плана, с древних времен волнующей художников, архитекторов, музыкантов, ученых.

Винтовые повороты . Трансляцию можно комбинировать с отражением или поворотом, при этом возникают новые операции симметрии. Поворот на определенное число градусов, сопровождаемый трансляцией на расстояние вдоль оси поворота, порождает винтовую симметрию - симметрию винтовой лестницы. Пример винтовой симметрии - расположение листьев на стебле многих растений. Головка подсолнечника имеет отростки, расположенные по геометрическим спиралям, раскручивающимся от центра наружу. Самые молодые члены спирали находятся в центре. В таких системах можно заметить два семейства спиралей, раскручивающихся в противоположные стороны и пересекающихся под углами, близкими к прямым. Но какими бы интересными и привлекательными ни были проявления симметрии в мире растений, там еще много тайн, управляющих процессами развития. Вслед за Гете, который говорил о стремлении природы к спирали, можно предположить, что движение это осуществляется по логарифмической спирали, начиная всякий раз с центральной, неподвижной точки и сочетая поступательное движение (растяжение) с поворотом вращения.

Перестановочная симметрия . Дальнейшее расширение количества физических симметрий связано с развитием квантовой механики. Одним из специальных видов симметрии в микромире является перестановочная симметрия. Она основана на принципиальной неразличимости одинаковых микрочастиц, которые движутся не по определенным траекториям, а их положения оцениваются по вероятностным характеристикам, связанным с квадратом модуля волновой функции. Перестановочная симметрия и заключается в том, что при "перестановке" квантовых частиц не изменяются вероятностные характеристики, квадрат модуля волновой функции - величина постоянная.

Симметрия подобия . Еще один тип симметрии - симметрия подобия, связанная с одновременным увеличением или уменьшением подобных частей фигуры и расстояний между ними. Примером такого рода симметрии служит матрешка. Очень широко распространена такая симметрия в живой природе. Ее демонстрируют все растущие организмы.

Вопросы симметрии играют решающую роль в современной физике. Динамические законы природы характеризуются определенными видами симметрии. В общем смысле под симметрией физических законов подразумевают их инвариантность по отношению к определенным преобразованиям. Необходимо также отметить, что рассмотренные типы симметрии имеют определенные границы применимости. Например, симметрия правого и левого существует только в области сильных электромагнитных взаимодействий, но нарушается при слабых. Изотопическая инвариантность справедлива только при учете электромагнитных сил. Для применения понятия симметрии можно ввести некую структуру, учитывающую четыре фактора:

· объект или явление, которое исследуется;

· преобразование, по отношению к которому рассматривается симметрия;

· Инвариантность каких-либо свойств объекта или явления, выражающая рассматриваемую симметрию. Связь симметрии физических законов с законами сохранения;

· границы применимости различных видов симметрии.

Изучение свойств симметрии физических систем или законов требует привлечения специального математического анализа, в первую очередь представлений теории групп, наиболее развитой в настоящее время в физике твердого тела и кристаллографии.

Глава 3 . Типы дефектов в твёрдых телах

Все реальные твердые тела, как монокристаллические, так и поликристаллические, содержат так называемые структурные дефекты, типы, концентрация, поведение которых весьма разнообразны и зависят от природы, условий получения материалов и характера внешних воздействий. Большинство дефектов, созданных внешним воздействием, термодинамически неустойчиво, а состояние системы в этом случае является возбужденным (неравновесным). Таким внешним воздействием может быть температура, давление, облучение частицами и квантами высоких энергий, введение примесей, фазовый наклеп при полиморфных и других превращениях, механическое воздействие и т. п. Переход в равновесное состояние может проходить разными путями и, как правило, реализуется посредством ряда метастабильных состояний.

Дефекты одних типов, взаимодействуя с дефектами того же или иного типов, могут аннигилировать или образовывать новые ассоциации дефектов. Эти процессы сопровождаются уменьшением энергии системы.

По числу направлений N, в которых простирается нарушение периодического расположения атомов в кристаллической решетке, вызванное данным дефектом, выделяют дефекты:

· Точечные (нульмерные, N=0);

· Линейные (одномерные, N=1);

· Поверхностные (двухмерные, N=2);

· Объемные (трехмерные, N=3);

Теперь каждый дефект рассмотрим подробно.

3.1 Точечные дефекты

К нульмерным (или точечным ) дефектам кристалла относят все дефекты, которые связаны со смещением или заменой небольшой группы атомов, а также с примесями. Они возникают при нагреве, легировании, в процессе роста кристалла и в результате радиационного облучения. Могут вноситься также в результате имплантации. Свойства таких дефектов и механизмы их образования наиболее изучены, включая движение, взаимодействие, аннигиляцию, испарение.

· Вакансия - свободный, незанятый атомом, узел кристаллической решетки.

· Собственный межузельный атом - атом основного элемента, находящийся в междоузельном положении элементарной ячейки.

· Примесный атом замещения - замена атома одного типа, атомом другого типа в узле кристаллической решетки. В позициях замещения могут находиться атомы, которые по своим размерам и электронным свойствам относительно слабо отличаются от атомов основы.

· Примесный атом внедрения - атом примеси располагается в междоузлии кристаллической решетки. В металлах примесями внедрения обычно являются водород, углерод, азот и кислород. В полупроводниках - это примеси, создающие глубокие энергетические уровни в запрещенной зоне, например, медь и золото в кремнии.

В кристаллах часто наблюдаются также комплексы, состоящие из нескольких точечных дефектов, например, дефект по Френкелю (вакансия + собственный междоузельный атом), бивакансия (вакансия + вакансия), А-центр (вакансия + атом кислорода в кремнии и германии) и др.

Термодинамика точечных дефектов. Точечные дефекты повышают энергию кристалла, так как на образование каждого дефекта была затрачена определенная энергия. Упругая деформация обуславливает очень малую долю энергии образования вакансии, так как смещения ионов не превышают 1 % и соответствующая им энергия деформации составляет десятые доли эВ. При образовании межузельного атома смещения соседних ионов могут достигать 20 % от межатомного расстояния, а соответствующая им энергия упругой деформации решетки - нескольких эВ. Основная доля образования точечного дефекта связана с нарушением периодичности атомной структуры и сил связи между атомами. Точечный дефект в металле взаимодействует со всем электронным газом. Удаление положительного иона из узла равносильно внесению точечного отрицательного заряда; от этого заряда отталкиваются электроны проводимости, что вызывает повышение их энергии. Теоретические расчеты показывают, что энергия образования вакансии в ГЦК решетке меди составляет около 1 эВ, а межузельного атома - от 2.5 до 3.5 эВ.

Несмотря на увеличение энергии кристалла при образовании собственных точечных дефектов, они могут находиться в термодинамическом равновесии в решетке, так как их образование приводит к росту энтропии. При повышенных температурах рост энтропийного члена TS свободной энергии из-за образования точечных дефектов компенсирует рост полной энергии кристалла U, и свободная энергия оказывается минимальной.

Равновесная концентрация вакансий:

где E 0 - энергия образования одной вакансии, k - постоянная Больцмана, T - абсолютная температура. Эта же формула справедлива для межузельных атомов. Формула показывает, что концентрация вакансий должна сильно зависеть от температуры. Формула для расчета проста, но точные количественные значения можно получить, только зная величину энергии образования дефекта. Рассчитать же теоретически эту величину весьма трудно, поэтому приходится довольствоваться лишь приближенными оценками.

Так как энергия образования дефекта входит в показатель степени, то это различие обусловливает громадную разницу в концентрации вакансий и межузельных атомов. Так, при 1000 °C в меди концентрация межузельных атомов составляет всего лишь 10 ?39 , что на 35 порядков меньше концентрации вакансий при этой температуре. В плотных упаковках, какие характерны для большинства металлов, очень трудно образовываться межузельным атомам, и вакансии в таких кристаллах являются основными точечными дефектами (не считая примесных атомов).

Миграция точечных дефектов. Атомы, совершающие колебательное движение, непрерывно обмениваются энергией. Из-за хаотичности теплового движения энергия неравномерно распределена между разными атомами. В какой-то момент атом может получить от соседей такой избыток энергии, что он займет соседнее положение в решетке. Так осуществляется миграция (перемещение) точечных дефектов в объеме кристаллов.

Если один из атомов, окружающих вакансию, переместится в вакантный узел, то вакансия соответственно переместится на его место. Последовательные элементарные акты перемещения определенной вакансии осуществляются разными атомами. На рисунке показано, что в слое плотноупакованных шаров (атомов) для перемещения одного из шаров в вакантное место он должен раздвинуть шары 1 и 2. Следовательно, для перехода из положения в узле, где энергия атома минимальна, в соседний вакантный узел, где энергия также минимальна, атом должен пройти через состояние с повышенной потенциальной энергией, преодолеть энергетический барьер. Для этого и необходимо атому получить от соседей избыток энергии, который он теряет, "протискиваясь" в новое положение. Высота энергетического барьера E m называется энергией активации миграции вакансии .

Источники и стоки точечных дефектов. Основным источником и стоком точечных дефектов являются линейные и поверхностные дефекты. В крупных совершенных монокристаллах возможен распад пересыщенного твердого раствора собственных точечных дефектов с образованием т. н. микродефектов.

Комплексы точечных дефектов. Простейший комплекс точечных дефектов - бивакансия (дивакансия): две вакансии, расположенные в соседних узлах решетки. Большую роль в металлах и полупроводниках играют комплексы, состоящие из двух и более примесных атомов, а также из примесных атомов и собственных точечных дефектов. В частности, такие комплексы могут существенно влиять на прочностные, электрические и оптические свойства твердых тел.

3.2 Линейные дефекты

Одномерные (линейные) дефекты представляют собой дефекты кристалла, размер которых по одному направлению много больше параметра решетки, а по двум другим - соизмерим с ним. К линейным дефектам относят дислокации и дисклинации. Общее определение: дислокация - граница области незавершенного сдвига в кристалле. Дислокации характеризуются вектором сдвига (вектором Бюргерса) и углом ц между ним и линией дислокации. При ц=0 дислокация называется винтовой; при ц=90° - краевой; при других углах - смешанной и тогда может быть разложена на винтовую и краевую компоненты. Дислокации возникают в процессе роста кристалла; при его пластической деформации и во многих других случаях. Их распределение и поведение при внешних воздействиях определяют важнейшие механические свойства, в частности такие как прочность, пластичность и др. Дисклинация - граница области незавершенного поворота в кристалле. Характеризуется вектором поворота.

3.3 Поверхностные дефекты

Основной дефект-представитель этого класса - поверхность кристалла. Другие случаи - границы зёрен материала, в том числе малоугловые границы (представляют собой ассоциации дислокаций), плоскости двойникования, поверхности раздела фаз и др.

3.4 Объёмные дефекты

К ним относятся скопления вакансий, образующие поры и каналы; частицы, оседающие на различных дефектах (декорирующие), например, пузырьки газов, пузырьки маточного раствора; скопления примесей в виде секторов (песочных часов) и зон роста. Как правило, это поры или включения примесных фаз. Представляют собой конгломерат из многих дефектов. Происхождение - нарушение режимов роста кристалла, распад пересыщенного твердого раствора, загрязнение образцов. В некоторых случаях (например, при дисперсионном твердении) объемные дефекты специально вводят в материал, для модификации его физических свойств.

Глава 4. Получен ие кристаллов

Развитие науки и техники привело к тому, что многие драгоценные камни или просто редко встречающиеся в природе кристаллы стали очень нужными для изготовления деталей приборов и машин, для выполнения научных исследований. Потребность во многих кристаллах возросла настолько, что удовлетворить ее за счет расширения масштабов выработки старых и поисков новых природных месторождений оказалось невозможно.

Кроме того, для многих отраслей техники и особенно для выполнения научных исследований все чаще требуются монокристаллы очень высокий химической чистоты с совершенной кристаллической структурой. Кристаллы, встречающиеся в природе, этим требованиям не удовлетворяют, так как они растут в условиях, весьма далеких от идеальных.

Таким образом, возникла задача разработки технологии искусственного изготовления монокристаллов многих элементов и химических соединений.

Разработка сравнительно простого способа изготовления "драгоценного камня" приводит к тому, что он перестает быть драгоценным. Объясняется это тем, что большинство драгоценных камней является кристаллами широко распространенных в природе химических элементов и соединений. Так, алмаз - это кристалл углерода, рубин и сапфир - кристаллы окиси алюминия с различными примесями.

Рассмотрим основные способы выращивания монокристаллов. На первый взгляд может показаться, что осуществить кристаллизацию из расплава очень просто. Достаточно нагреть вещество выше температуры плавления, получить расплав, а затем охладить его. В принципе это правильный путь, но если не принять специальных мер, то в лучшем случае получится поликристаллический образец. А если опыт проводить, например, с кварцем, серой, селеном, сахаром, способными в зависимости от скорости охлаждения их расплавов затвердевать в кристаллическом или аморфном состоянии, то нет никакой гарантии, что не будет получено аморфное тело.

Для того чтобы вырастить один монокристалл, недостаточно медленного охлаждения. Нужно сначала охладить один небольшой участок расплава и получить в нем "зародыш" кристалла, А затем, последовательно охлаждая расплав, окружающий "зародыш", дать возможность разрастись кристаллу по всему объему расплава. Этот процесс можно обеспечить медленным опусканием тигля с расплавом сквозь отверстие в вертикальной трубчатой печи. Кристалл зарождается на дне тигля, так как оно раньше попадает в область более низких температур, а затем постепенно разрастается по всему объему расплава. Дно тигля специально делают узким, заостренным на конус, чтобы в нем мог расположиться только один кристаллический зародыш.

Этот способ часто применяется для выращивания кристаллов цинка, серебра, алюминия, меди и других металлов, а также хлористого натрия, бромистого калия, фтористого лития и других солей, используемых оптической промышленностью. За сутки можно вырастить кристалл каменной соли массой порядка килограмма.

Недостатком описанного метода является загрязнение кристаллов материалом тигля. кристалл дефект симметрия свойство

Этого недостатка лишен бестигельный способ выращивания кристаллов из расплава, которым выращивают, например, корунд, (рубины, сапфиры). Тончайший порошок окиси алюминия из зерен размером 2-100 мкм высыпается тонкой струёй из бункера, проходит через кислородно-водородное пламя, плавится и в виде капель попадает на стержень из тугоплавкого материала. Температура стержня поддерживается несколько ниже температуры плавления окиси алюминия (2030°С). Капли окиси алюминия охлаждаются на нем и образуют корку спекшейся массы корунда. Часовой механизм медленно (10-20 мм/ч) опускает стержень, и на нем постепенно вырастает не ограненный кристалл корунда, по форме напоминающий перевернутую грушу, так называемая буля.

Как и в природе, получение кристаллов из раствора сводится к двум способам. Первый из них состоит в медленном испарении растворителя из насыщенного раствора, а второй - в медленном понижении температуры раствора. Чаще применяют второй способ. В качестве растворителей используют воду, спирты, кислоты, расплавленные соли и металлы. Недостатком методов выращивания кристаллов из раствора является возможность загрязнения кристаллов частицами растворителя.

Кристалл растет из тех участков пересыщенного раствора, которые его непосредственно окружают. В результате этого вблизи кристалла раствор оказывается менее пересыщенным, чем вдали от него. Так как пересыщенный раствор тяжелее насыщенного, то над поверхностью растущего кристалла всегда имеется направленный вверх поток "использованного" раствора. Без такого перемешивания раствора рост кристаллов быстро бы прекратился. Поэтому часто дополнительно перемешивают раствор или закрепляют кристалл на вращающемся держателе. Это позволяет выращивать более совершенные кристаллы.

Чем меньше скорость роста, тем лучше получаются кристаллы. Это правило справедливо для всех методов выращивания. Кристаллы сахара и поваренной соли легко получить из водного раствора в домашних условиях. Но, к сожалению, не все кристаллы можно вырастить так просто. Например, получение кристаллов кварца из раствора происходит при температуре 400°С и давлении 1000 ат.

Глава 5. Свойства кристаллов

Рассматривая различные кристаллы, мы видим, что все они разные по форме, но любой из них представляет симметричное тело. И действительно, симметричность - это одно из основных свойств кристаллов. Симметричными мы называем тела, которые состоят из равных одинаковых частей.

Все кристаллы симметричны. Это значит, что в каждом кристаллическом многограннике можно найти плоскости симметрии, оси симметрии, центры симметрии и другие элементы симметрии так, чтобы совместились друг с другом одинаковые части многогранника. Введем еще одно понятие относящиеся к симметрии - полярность.

Каждый кристаллический многогранник обладает определенным набором элементов симметрии. Полный набор всех элементов симметрии, присущих данному кристаллу называется классом симметрии. Их количество ограничено. Математическим путем было доказано, что в кристаллах существует 32 вида симметрии.

Рассмотрим более подробно виды симметрии в кристалле. Прежде всего, в кристаллах могут быть оси симметрии только 1, 2, 3, 4 и 6 порядков. Очевидно, оси симметрии 5, 7-го и выше порядков не возможны, потому что при такой структуре атомные ряды и сетки не заполнят пространство непрерывно, возникнут пустоты, промежутки между положениями равновесия атомов. Атомы окажутся не в самых устойчивых положениях, и кристаллическая структура разрушится.

В кристаллическом многограннике можно найти разные сочетания элементов симметрии - у одних мало, у других много. По симметрии, прежде всего по осям симметрии, кристаллы делятся на три категории.

К высшей категории относятся самые симметричные кристаллы, у них может быть несколько осей симметрии порядков 2, 3 и 4, нет осей 6-го порядка, могут быть плоскости и центры симметрии. К таким формам относятся куб, октаэдр, тетраэдр и др. Им всем присуща общая черта: они примерно одинаковы во все стороны.

У кристаллов средней категории могут быть оси 3, 4 и 6 порядков, но только по одной. Осей 2 порядка может быть несколько, возможны плоскости симметрии и центры симметрии. Формы этих кристаллов: призмы, пирамиды и др. Общая черта: резкое различие вдоль и поперек главной оси симметрии.

Из кристаллов к высшей категории относятся: алмаз, кварцы, германий, кремний, медь, алюминий, золото, серебро, серое олово, вольфрам, железо. К средней категории: графит, рубин, кварц, цинк, магний, белое олово, турмалин, берилл. К низшей: гипс, слюда, медный купорос, сегнетовая соль и др. Конечно в этом списке не были перечислены все существующие кристаллы, а только наиболее известные из них.

Категории в свою очередь разделяются на семь сингоний. В переводе с греческого "сингония" означает "сходноугольство". В сингонию объединяются кристаллы с одинаковыми осями симметрии, а значит, со сходными углами поворотов в структуре.

Физические свойства кристаллов чаще всего зависят от их структуры и химического строения.

Сначала стоит упомянуть два основных свойства кристаллов. Одним из них является анизотропия. Под этим термином подразумевается изменение свойств в зависимости от направления. Вместе с тем кристаллы являются телами однородными. Однородность кристаллического вещества состоит в том, что два его участка одинаковой формы и одинаковой ориентировки одинаковы по свойствам.

Поговорим сначала об электрических свойствах. В принципе электрические свойства кристаллов можно рассматривать на примере металлов, так как металлы, в одном из состояний, могут представлять собой кристаллические агрегаты. Электроны, свободно передвигаясь в металле, не могут выйти наружу, для этого нужно затратить энергию. Если при этом затрачивается лучистая энергия, то эффект отрыва электрона вызывает так называемый фотоэлектрический эффект. Аналогичный эффект наблюдается и в монокристаллах. Вырванный из молекулярной орбиты электрон, оставаясь внутри кристалла, обуславливает у последнего металлическую проводимость (внутренний фотоэлектрический эффект). В нормальных же условиях (без облучения) такие соединения не являются проводниками электрического тока.

Поведением световых волн в кристаллах занимался Э. Бертолин, который первый заметил, что волны ведут себя нестандартно при прохождении через кристалл. Однажды Берталин зарисовывал двугранные углы исландского шпата, затем он положил кристалл на чертежи, тогда ученый в первый раз увидел, что каждая линия раздваивается. Он несколько раз убедился, что все кристаллы шпата раздваивают свет, лишь тогда Берталин написал трактат "Опыты с двупреломляющим исландским кристаллом, которые привели к открытию чудесного и необыкновенного преломления" (1669г.). Ученый разослал результаты своих опытов в несколько стран отдельным ученым и академиям. Работы были приняты с полным недоверием. Английская Академия наук выделила группу ученых на проверку данного закона (Ньютон, Бойль, Гук и др.). Эта авторитетная комиссия признала явление случайным, а закон несуществующим. О результатах опытов Берталина было забыто.

Лишь через 20 лет Христиан Гюйгенс подтвердил правильность открытие Берталина и сам открыл двупреломление в кварце. Многие ученые, в последствии занимавшиеся этим свойством подтвердили, что не только исландский шпат, но и многие другие кристаллы раздваивают свет.

...

Подобные документы

    Структура кристаллов. Роль, предмет и задачи физики твердого тела. Кристаллические и аморфные тела. Типы кристаллических решеток. Типы связей в кристаллах. Кристаллические структуры твердых тел. Жидкие кристаллы. Дефекты кристаллов.

    лекция , добавлен 13.03.2007

    Понятие и основные черты конденсированного состояния вещества, характерные процессы. Кристаллические и аморфные тела. Сущность и особенности анизотропии кристаллов. Отличительные черты поликристаллов и полимеров. Тепловые свойства и структура кристаллов.

    курс лекций , добавлен 21.02.2009

    Общие свойства твердого тела, его состояния. Локализированные и делокализированные состояния твердого тела, отличительные черты. Сущность, виды химической связи в твердых телах. Локальное и нелокальное описания в неискаженных решетках. Точечные дефекты.

    учебное пособие , добавлен 21.02.2009

    Кристаллы - реальные твердые тела. Термодинамика точечных дефектов в кристаллах, их миграция, источники и стоки. Исследование дислокации, линейного дефекта кристаллической структуры твёрдых тел. Двумерные и трехмерные дефекты. Аморфные твердые тела.

    доклад , добавлен 07.01.2015

    Физика твердого тела – один из столпов, на которых покоится современное технологическое общество. Физическое строение твердых тел. Симметрия и классификация кристаллов. Особенности деформации и напряжения. Дефекты кристаллов, способы повышения прочности.

    презентация , добавлен 12.02.2010

    Сложение элементов симметрии дисконтинуума. Последовательное отражение в двух параллельных плоскостях симметрии. Сумма плоскости симметрии и перпендикулярной к ней трансляции. Характеристика действия трансляционного вектора на перпендикулярные ему оси.

    презентация , добавлен 23.09.2013

    Кристаллическое и аморфное состояния твердых тел, причины точечных и линейных дефектов. Зарождение и рост кристаллов. Искусственное получение драгоценных камней, твердые растворы и жидкие кристаллы. Оптические свойства холестерических жидких кристаллов.

    реферат , добавлен 26.04.2010

    Фотоэлектрические свойства неоднородных полупроводниковых образцов. Энергетическая структура омического контакта в присутствии неравномерно распределенных электронных ловушек. Фотоэлектрические свойства кристаллов, обработанных в газовом разряде.

    дипломная работа , добавлен 18.03.2008

    Дефекты реальных кристаллов, принцип работы биполярных транзисторов. Искажение кристаллической решетки в твердых растворах внедрения и замещения. Поверхностные явления в полупроводниках. Параметры транзистора и коэффициент передачи тока эмиттера.

    контрольная работа , добавлен 22.10.2009

    Водородная связь в воде, ее основные критерии. Аномальные свойства воды. Понятие о электролизе и электролитах. Электрокристаллизация и ее закономерности. Динамика сетки водородных связей при электрокристаллизации воды. Кристаллические и аморфные льды.