Физическая природа силы трения качения. Коэффициенты трения. Сила трения качения

Трением качения называется трение движения, при котором скорости соприкасающихся тел в точках касания одинаковы по значению и направлению.

Если движение двух соприкасающихся тел происходит при одновременном качении и скольжении, то в этом случае возникает трение качения с проскальзыванием .

Рассмотрим качение без скольжения цилиндра весом G и радиусом r по горизонтальной опорной плоскости (см. рис. 1) . В результате действия силы G произойдет деформация цилиндра и опорной плоскости в месте их соприкосновения. Если сила P не действует, то сила G будет уравновешиваться реакцией R опорной плоскости и цилиндр будет находиться в покое (реакция R будет вертикальна). Если к цилиндру приложить небольшую силу Р , то он по-прежнему будет находиться в покое. При этом произойдет перераспределение давлений на опорную поверхность и полная реакция R пройдет через некоторую точку А и через точку О (согласно теореме о равновесии трех непараллельных сил ).

При каком-то критическом значении силы Р цилиндр придет в движение и будет равномерно перекатываться по опорной плоскости, а точка А займет при этом крайнее правое положение. Отсюда видно, что трение качения в состоянии покоя может изменяться от нуля до какого-то максимального значения, причем максимальным оно будет в момент начала движения.

Обозначим k максимальное значение плеча силы G относительно точки А . Тогда в случае равномерного перекатывания цилиндра (т. е. равновесия) :

ΣM А = 0 или – Pr + Gh = 0 ,

причем плечо силы Р вследствие незначительности деформации тел считаем равным радиусу цилиндра r (сила Р – горизонтальная). Из последнего равенства определим силу, необходимую для равномерного качения цилиндра:

Р = kG/r

Максимальное значение плеча k называется коэффициентом трения качения; он имеет размерность длины и выражается в сантиметрах или миллиметрах.

Из полученной формулы видно, что усилие, необходимое для перекатывания цилиндрического катка, прямо пропорционально его весу G и обратно пропорционально радиусу r катка. Из этого следует, что каток, имеющий бóльший диаметр, легче перекатывать.

Коэффициент трения качения определяется опытным путем, его значения для различных условий приводятся в справочниках. Ниже приведены ориентировочные значения коэффициента трения качения k для катка по плоскости (см) :

    Мягкая сталь по мягкой стали............................0,005

    Закаленная сталь по закаленной стали..............0,001

    Чугун по чугуну................................................0,005

    Дерево по стали......................................0,03...0,04

    Дерево по дереву...................................0,05...0,08

    Резиновая шина по шоссе...............................0,24

Коэффициент трения качения практически не зависит от скорости движения тела.

В ряде случаев при изучении трения качения активные и реактивные силы, действующие на каток, удобно представлять в ином виде (см. рисунок 2а, б) .

Разложим полную реакцию R опорной поверхности на составляющие N и F тр , тогда:

R = N + F тр ,

где F тр – сила трения качения; N - реакция, нормальная к недеформированной опорной плоскости.

Составим три уравнения равновесия катка:

ΣX = 0; P – F тр = 0;ΣY = 0; N – G = 0;

ΣM А = 0; - Pr + Gk = 0.

Из этих уравнений имеем:

P = F тр ; N = G ; Pr = Gk .

Введем обозначения Pr = M , Gk = M тр , где М – момент трения качения, М тр – момент трения.

Возможны следующие частные случаи качения цилиндрического катка:

    М ≥ М тр , но Р < F тр – имеет место только качение;

    М < М тр , но Р > F тр – имеет место только скольжение;

    М > М тр , но Р > F тр – качение с проскальзыванием;

    М < М тр , но Р < F тр – каток находится в состоянии покоя.

Трение качения в большинстве случаев меньше трения скольжения, поэтому вместо подшипников скольжения широко применяют шариковые, роликовые или другие подшипники качения, которые, несмотря на более высокую стоимость, дают значительный выигрыш в экономии энергии из-за уменьшения потерь на трение.

Смазочные материалы

Смазочные материалы классифицируются, в первую очередь, по физическому состоянию.

Существуют:

    газообразные

  • консистентные

    твердые смазочные материалы

Смазочные материалы предназначены для снижения трения и износа.

В зависимости от нагрузки они выполняют следующие задачи:

    отвод тепла

    защита поверхностей

    пропускание тока

Выполняя эти задачи, различные смазочные материалы ведут себя неодинаково.

Жидкие смазочные материалы

    отвод тепла

    защита поверхностей

    пропускание тока

    отвод частиц, вызывающих износ

К жидким смазочным материалам относятся:

    жирные масла

    минеральные масла

    синтетические масла

Жирные масла не очень подходят для смазки. Хотя они и обладают хорошим смазывающим эффектом, они неустойчивы к низким температурам и чувствительны к окислителям. В технических областях бесспорными лидерами являются минеральные масла.

В наше время все большее значение приобретают синтетические масла

Их преимущества:

    повышенная устойчивость к окислению

    устойчивость к низким и высоким температурам

    долговременная смазка, смазка на весь срок службы изделия

Антикоррозийные материалы и разделительные агенты представляют собой специальные продукты, одной из задач которых является также и смазка.

Консистентные смазочные материалы

Эти материалы выполняют следующие задачи:

    защита поверхностей

    пропускание тока

    удерживание от попадания инородных веществ

К консистентным смазочным материалам относятся:

    пластичные смазки

    смазочные пасты

    смазывающие воски

Смазывающие воски имеют высоко молекулярную углеводородную основу. Предпочтительными областями их применения являются граничная и парциальная смазка при низких скоростях. Пластичные смазки изготавливаются на основе смазочных масел и имеют консистентную структуру благодаря загустителю. Их можно применять как при эластогидродинамической смазке, так и при граничной смазке и парциальной смазке деталей. Смазочные пасты отличаются высоким содержанием твердых смазочных веществ. Они применяются при граничной и парциальной смазке деталей для подвижной, переходной или прессовой посадки. Консистентные смазочные материалы применяются тогда, когда из-за недостаточного уплотнения зазора смазка не должна вытекать и/или когда смазка должна быть устойчивой к жидкостям. В наши дни эти материалы имеют огромное значение, так как при их минимальном расходе обеспечивается максимальный срок службы деталей и оборудования.

Твердые смазочные материалы

Эти материалы могут выполнять следующие задачи:

    защита поверхностей

    материалы для трибосистем

    лаки для смазки

Помимо этого к ним относятся порошковые полимеры или металлические материалы, а также минералы, например, политетрафторэтилен, медь, графит или дисульфид молибдена. Для применения в качестве порошков они подходят плохо. Поэтому их используют в качестве присадок, которые обеспечивают защиту как от трения, так и от износа. Твердые смазочные материалы применяются, как правило, для сухой смазки. В результате получается граничная смазка, которая при включении жидких или консистентных смазок в материалы для трибосистем может использоваться для парциальной смазки. Твердые смазочные материалы применяются преимущественно в тех случаях, когда из-за функциональных особенностей или загрязнения жидкие или консистентные смазки не являются идеальным решением проблемы, а для ее решения достаточно свойств твердых смазочных материалов.

Трение (фрикционное взаимодействие) – процесс взаимодействия тел при их относительном движении (смещении) либо при движении тела в газообразной или жидкой среде.

Изучением процессов трения занимается раздел физики, который называется трибология (механика фрикционного взаимодействия).

Трение принято разделять на:

  • сухое , когда взаимодействующие твёрдые тела не разделены никакими дополнительными слоями / смазками (в том числе и твёрдыми смазочными материалами) – очень редко встречающийся на практике случай; характерная отличительная черта сухого трения – наличие значительной силы трения покоя;
  • граничное , когда в области контакта могут содержаться слои и участки различной природы (окисные плёнки, жидкость и так далее) – наиболее распространённый случай при трении скольжения;
  • жидкостное (вязкое), возникающее при взаимодействии тел, разделённых слоем твёрдого тела (порошком графита), жидкости или газа (смазки) различной толщины – как правило, встречается при трении качения, когда твёрдые тела погружены в жидкость, величина вязкого трения характеризуется вязкостью среды;
  • смешанное , когда область контакта содержит участки сухого и жидкостного трения;
  • эластогидродинамическое (вязкоупругое), когда решающее значение имеет внутреннее трение в смазывающем материале. Возникает при увеличении относительных скоростей перемещения.

Сила трения – это сила, возникающая в месте соприкосновения тел и препятствующая их относительному движению.

Причины возникновения силы трения:

  • шероховатость соприкасающихся поверхностей;
  • взаимное притяжение молекул этих поверхностей.

Трение скольжения – сила, возникающая при поступательном перемещении одного из контактирующих / взаимодействующих тел относительно другого и действующая на это тело в направлении, противоположном направлению скольжения.

Трение качения – момент сил, возникающий при качении одного из двух контактирующих / взаимодействующих тел относительно другого.

Трение покоя – сила, возникающая между двумя контактирующими телами и препятствующая возникновению относительного движения. Эту силу необходимо преодолеть для того, чтобы привести два контактирующих тела в движение друг относительно друга.

Сила трения прямо пропорциональна силе нормальной реакции, то есть зависит от того, насколько сильно тела прижаты друг к другу и от их материала, поэтому основной характеристикой трения является коэффициент трения , который определяется материалами, из которых изготовлены поверхности взаимодействующих тел.

Износ – изменение размеров, формы, массы или состояния поверхности изделия вследствие разрушения (изнашивания) поверхностного слоя при трении.

Работа любой машины неизбежно сопровождается трением при относительном движении её частей, поэтому полностью устранить износ невозможно. Величина износа при непосредственном контакте поверхностей прямо пропорциональна работе сил трения.

Абразивный износ частично вызывается действием пыли и грязи, поэтому очень важно содержать оборудование в чистоте, особенно её трущиеся части.

Для борьбы с износом и трением заменяют одни металлы другими, более устойчивыми, применяют термическую и химическую обработку трущихся поверхностей, точную механическую обработку, а также заменяют металлы различными заменителями, изменяют конструкцию, улучшают смазку (изменяют вид, вводят присадки) и т.д.

В машинах стремятся не допускать непосредственного трения скольжения твёрдых поверхностей, для чего или разделяют их слоем смазки (жидкостное трение), или же вводят между ними добавочные элементы качения (шариковые и роликовые подшипники).

Основное правило конструирования трущихся деталей машин состоит в том, что более дорогой и трудно заменяемый элемент трущейся пары (вал) изготовляют из более твёрдого и более износоустойчивого материала (твёрдая сталь), а более простые, дешёвые и легко заменяемые части (вкладыши подшипников) изготовляют из сравнительно мягкого материала с небольшим коэффициентом трения (бронза, баббит).

Большинство деталей машин выходят из строя именно вследствие износа, поэтому уменьшение трения и износа даже на 5-10% даёт огромную экономию, что имеет исключительное значение.

Перечень ссылок

  1. Трение // Википедия. – http://ru.wikipedia.org/wiki/Трение .
  2. Износ (техника) // Википедия. – http://ru.wikipedia.org/wiki/Износ_(техника) .
  3. Трение в машинах, трение и износ в машиностроении // Проект-Технарь. Прогрессивные авто-технологии. – http://www.studiplom.ru/Technology/Trenie.html .

Вопросы для контроля

  1. Что такое трение?
  2. Какие существуют разновидности трения?
  3. Что приводит к возникновению силы трения?
  4. Как классифицируют трение в зависимости от действующих сил?
  5. Что такое износ и как с ним борются?
<

Сила трения качения описывается как: Fтр=kтр(Fn/r) , где kтр- коэффициент трения а Fn - прижимающая сила, а r - радиус колеса. Размерность коэффициента трения качения, естественно, [длина]. Ниже приводится таблица полезных диапазонов коэффициентов трения качения для различных пар материалов в см.

Коэффициенты трения скольжения для различных материалов

Трущиеся поверхности k
Бронза побронзе 0,2
Бронза постали 0,18
Дерево сухое подереву 0,25 - 0,5
Деревянные полозья поснегу и льду 0,035
то же, но полозья обиты стальной полосой 0,02
Дуб подубу вдоль волокон 0,48
тоже поперек волокон одного тела и вдоль волокон другого 0,34
Канат пеньковый мокрый подубу 0,33
Канат пеньковый сухой подубу 0,53
Кожаный ремень влажный пометаллу 0,36
Кожаный ремень влажный подубу 0,27 - 0,38
Кожаный ремень сухой пометаллу 0,56
Колесо со стальным бандажом по стальному рельсу 0,16
Лед по льду 0,028
Медь по чугуну 0,27
Металл влажный по дубу 0,24-0,26
Металл сухой подубу 0,5-0,6
Подшипник скольжения при смазке 0,02-0,08
Резина (шины) потвердому грунту 0,4-0,6
Резина (шины) почугуну 0,83
Смазанный жиром кожаный ремень пометаллу 0,23
Сталь (или чугун) поферодо* и райбесту* 0,25-0,45
Сталь пожелезу 0,19
Сталь польду (коньки) 0,02-0,03
Сталь постали 0,18
Сталь почугуну 0,16
Фторопласт понержавеющей стали 0,064-0,080
Фторопласт-4 пофторопласту 0,052-0,086
Чугун побронзе 0,21
Чугун почугуну 0,16
Примечание. Звездочкой отмечены материалы, применяемые в тормозных и фрикционных устройствах.

Таблица коэффициентов трения покоя (коэффициентов сцепления) для различных пар материалов.

Материал

Химически чистые металл по металлу

совсем без окисных пленок (тщательно очищенные) 100
несмазанные на воздухе 1,0
смазанные минеральным маслом 0,2-0,4
смазанные растительными и животными маслами 0,1

Сплавы, по стали

медно-свинцовый несмазанный 0,2
медно-свинцовый смазанный минеральным маслом 0,1
Сплав Вуда, белый металл = white metall несмазанный 0,7
Сплав Вуда, белый металл смазанный минеральным маслом 0,1
Фосфористая бронза, латунь несмазанная 0,35
Фосфористая бронза, латунь смазанная минеральным маслом 0,15-0,2
Сталь обычная несмазанная 0,4
Сталь обычная смазанная минеральным маслом 0,1-0,2
Стальные поверхности высокой твердости несмазанные 0,6

Стальные поверхности высокой твердости при смазке:

- растительные и животные масла 0,08-0,1
- минеральные масла 0,12
- дисульфид молибдена 0,1
- олеиновая кислота 0,08
- спирт, бензин 0,4
- глицерин 0,2
Тонкая пленка индия толщиной 10 -3 -10 -4 см на твердом основании 0,08
Тонкая пленка свинца на твердом основании 0,15
Тонкая пленка меди на твердом основании 0,3

Неметаллические материалы

стекло по стеклу, очищенные 1
стекло по стеклу, смазанные жидкими углеводородами или жирными кислотами 0,3-0,6
стекло по стеклу, смазанные твердыми углеводородами 0,1
Алмаз по алмазу, очищенные и дегазированные 0,4
Алмаз по алмазу, очищенные, на воздухе 0,1
Алмаз по алмазу, смазанные 0,05-0,1
Сапфир по сапфиру, очищенные и дегазированные 0,6
Сапфир по сапфиру, очищенные, на воздухе 0,2
Сапфир по сапфиру, смазанные 0,15-0,2
Графит по графиту, очищенные и дегазированные 0,5-0,8
Графит по графиту, очищенные, на воздухе 0,1
Графит по графиту, смазанные, на воздухе 0,1
Графит по стали, очищенный и смазанный 0,1
Каменная соль очищенная по каменной соли 0,8
Нитрат соды по нитрату соды очищенные 0,5
Нитрат соды по нитрату соды смазанные 0,12
Лед по льду при ниже -50°С 0,5
Лед по льду в диапазоне 0/ -20°С 0,05-0,1
Карбид вольфрама по стали, очищенные 0,4-0,6
Карбид вольфрама по стали, смазанные 0,1-0,2
Перпекс или полиэтилен по перпексу или полиэтилену, очищенные 0,8
Перпекс или полиэтилен по стали, очищенные 0,3-0,5
Нейлон по нейлону 0,5
ПТФЕ по ПТФЕ (Ф-4, фторопласт-4) 0,04-0,1
ПТФЕ по стали 0,04-0,1
Шерстяное волокно по роговине (материал вроде рога быка) , очищенное, по ворсу 0,4-0,6
Шерстяное волокно по роговине (материал вроде рога быка) , очищенное, против ворса 0,8-0,1
Шерстяное волокно по роговине (материал вроде рога быка) , смазанное, по ворсу 0,3-0,4
Шерстяное волокно по роговине (материал вроде рога быка) ,смазаное, против ворса 0,5-0,3
Хлопковая нить по хлопковой нити в состоянии поставки 0,3
Хлопок по хлопку (вата) в состоянии поставки 0,6
Шелк по шелку в состоянии поставки 0,2-0,3
Дерево по дереву, очищенное сухое 0,2-0,5
Дерево по дереву, очищенное влажное 0,2
Дерево по кирпичу, очищенное сухое 0,3-0,4
Кожа по металлу очищенная сухая 0,6
Кожа по металлу очищенная влажная 0,4
Кожа по металлу очищенная смазанная 0,2
Тормозной материал по чугуну очищенный 0,4
Тормозной материал по чугуну влажный 0,2
Тормозной материал по чугуну смазанный 0,1

Коэффициенты трения качения.

Сила трения качения описывается как:

F тр =k тр (F n /r) , где k тр - коэффициент трения а F n - прижимающая сила, а r - радиус колеса.

Размерность коэффициента трения качения, естественно, [длина].

Ниже приводится таблица полезных диапазонов коэффициентов трения качения для различных пар материалов в см.

Сила трения скольжения - силы , возникающие между соприкасающимися телами при их относительном движении. Если между телами отсутствует жидкая или газообразная прослойка (смазка), то такое трение называется сухим . В противном случае, трение называется «жидким». Характерной отличительной чертой сухого трения является наличие трения покоя.

Опытным путём установлено, что сила трения зависит от силы давления тел друг на друга (силы реакции опоры), от материалов трущихся поверхностей, от скорости относительного движения и не зависит от площади соприкосновения. (Это можно объяснить тем, что никакое тело не является абсолютно ровным. Поэтому истинная площадь соприкосновения гораздо меньше наблюдаемой. Кроме того, увеличивая площадь, мы уменьшаем удельное давление тел друг на друга.) Величина, характеризующая трущиеся поверхности, называется коэффициентом трения , и обозначается чаще всего латинской буквой «k» или греческой буквой «μ». Она зависит от природы и качества обработки трущихся поверхностей. Кроме того, коэффициент трения зависит от скорости. Впрочем, чаще всего эта зависимость выражена слабо, и если большая точность измерений не требуется, то «k» можно считать постоянным.

В первом приближении величина силы трения скольжения может быть рассчитана по формуле:

Где

Коэффициент трения скольжения,

Сила нормальной реакции опоры.

По физике взаимодействия трение принято разделять на:

  • Сухое, когда взаимодействующие твёрдые тела не разделены никакими дополнительными слоями/смазками - очень редко встречающийся на практике случай. Характерная отличительная черта сухого трения - наличие значительной силы трения покоя.
  • Сухое с сухой смазкой (графитовым порошком)
  • Жидкостное, при взаимодействии тел, разделённых слоем жидкости или газа (смазки) различной толщины - как правило, встречается при трении качения, когда твёрдые тела погружены в жидкость;
  • Смешанное, когда область контакта содержит участки сухого и жидкостного трения;
  • Граничное, когда в области контакта могут содержатся слои и участки различной природы (окисные плёнки, жидкость и т. д.) - наиболее распространённый случай при трении скольжения.

В связи со сложностью физико-химических процессов, протекающих в зоне фрикционного взаимодействия, процессы трения принципиально не поддаются описанию с помощью методов классической механики.

При механических процессах всегда происходит в большей или меньшей степени преобразование механического движения в другие формы движения материи (чаще всего в тепловую форму движения). В последнем случае взаимодействия между телами носят названия сил трения.

Опыты с движением различных соприкасающихся тел (твёрдых по твёрдым, твёрдых в жидкости или газе, жидких в газе и т. п.) с различным состоянием поверхностей соприкосновения показывают, что силы трения проявляются при относительном перемещении соприкасающихся тел и направлены против вектора относительной скорости тангенциально к поверхности соприкосновения. При этом всегда происходит нагревание взаимодействующих тел.

Силами трения называются тангенциальные взаимодействия между соприкасающимися телами, возникающие при их относительном перемещении. Силы трения возникающие при относительном перемещении различных тел, называются силами внешнего трения.

Силы трения возникают и при относительном перемещении частей одного и того же тела. Трение между слоями одного и того же тела называется внутренним трением.

В реальных движениях всегда возникают силы трения большей или меньшей величины. Поэтому при составлении уравнений движения, строго говоря, мы должны в число действующих на тело сил всегда вводить силу трения F тр.

Тело движется равномерно и прямолинейно, когда внешняя сила уравновешивает возникающую при движении силу трения.

Для измерения силы трения, действующей на тело, достаточно измерить силу, которую необходимо приложить к телу, чтобы оно двигалось без ускорения.

Трение качения

Тре́ние каче́ния - сопротивление движению, возникающее при перекатывании тел друг по другу. Проявляется, например, между элементами подшипников качения , между шиной колеса автомобиля и дорожным полотном. В большинстве случаев величина трения качения гораздо меньше величины трения скольжения при прочих равных условиях, и потому качение является распространенным видом движения в технике.

Трение качения возникает на границе двух тел, и поэтому оно классифицируется как вид внешнего трения.

Сила трения качения

Пусть на тело вращения, располагающееся на опоре, действуют

Если векторная сумма этих сил равна нулю

то ось симметрии тела движется равномерно и прямолинейно или остаётся неподвижной (см. рис. 1) . Вектор определяет силу трения качения, противодействующую движению. Это означает, что прижимающая сила уравновешивается вертикальной составляющей реакции опоры, а внешняя сила уравновешивается касательной составляющей реакции опоры.

Равномерное качение означает также, что сумма моментов сил относительно произвольной точки равна нулю. Из равновесия относительно оси вращения моментов сил, изображённых на рис. 2 и 3 , следует:


Wikimedia Foundation . 2010 .

Цель работы :познакомиться с явлением трения качения, определить коэффициент трения качения четырехколесной тележки..

Оборудование : тележка как модель вагона, горизонтальная рельсовая колея с набором фотоэлементов, секундомер, набор грузов.

ТЕОРЕТИЧЕСКОЕ ВВЕДЕНИЕ

Сила трения качения – это касательная к поверхности контакта сила сопротивления движению, возникающая при качении цилиндрических тел.

При качении колеса по рельсу происходит деформация как колеса, так и рельса. Вследствие неидеальной упругости материала в зоне контакта происходят процессы пластической деформации микробугорков, поверхностных слоев колеса и рельса. Из-за остаточной деформации уровень рельса за колесом оказывается ниже, чем перед колесом и колесо при движении постоянно закатывается на бугорок. В наружной части зоны контакта происходит частичное проскальзывание колеса по рельсу. Во всех этих процессах совершается работа силой трения качения. Работа этой силы приводит к рассеянию механической энергии, переходу ее в теплоту, поэтому сила трения качения является диссипативной силой.

В центральной части зоны контакта возникает еще одна касательная сила – это сила трения покоя или сила сцепления материала колеса и рельса. Для ведущего колеса локомотива сила сцепления является силой тяги, а при торможении колодочным тормозом – силой торможения. Так как в центре зоны контакта перемещения колеса относительно рельса отсутствует, то работа силой сцепления не совершается.

Распределение давления на колесо со стороны рельса оказывается несимметричным. Спереди давление больше, а сзади меньше (рис.1). Поэтому точка приложения равнодействующей силы на колесо смещена вперед на некоторое небольшое расстояние b относительно оси. Представим силу воздействия рельса на колесо в виде двух составляющих. Одна направлена по касательной к зоне контакта, она является силой сцепления F сцепл . Другая составляющая Q направлена по нормали к поверхности контакта и проходит через ось колеса.

Разложим, в свою очередь, силу нормального давления Q на две составляющие: силу N , которая перпендикулярна рельсу и компенсирует силу тяжести, и силу F кач , которая направлена вдоль рельса против движения. Эта сила препятствует движению колеса и является силой трения качения. Сила давления Q вращающего момента сил не создает. Поэтому моменты составляющих ее сил относительно оси колеса должны компенсировать друг друга: . Откуда . Сила трения качения пропорциональна силе N , действующей на колесо перпендикулярно рельсу:

. (1)

Здесь коэффициент трения качения. Он зависит от упругости материала рельса и колеса, состояния поверхности, размеров колеса. Как видно, чем больше колесо, тем сила трения качения меньше. Если бы за колесом форма рельса восстанавливалась, то эпюра давления была бы симметрична, и трение качения отсутствовало. При качении стального колеса по стальному рельсу коэффициент трения качения достаточно мал: 0,003–0,005, в сотни раз меньше коэффициента трения скольжения. Поэтому катить легче, чем тащить.

Экспериментальное определение коэффициента трения качения производится на лабораторной установке. Пусть тележка, являющаяся моделью вагона, катится по горизонтальным рельсам. На нее со стороны рельсов действуют горизонтальные силы трения качения и сцепления (рис. 2). Запишем уравнение второго закона Ньютона для замедленного движения тележки массой m в проекции на направление ускорения:

. (2)

Поскольку масса колес составляет значительную часть от массы тележки, то нельзя не учесть вращательного движения колес. Представим качение колес как сумму двух движений: поступательного движения вместе с тележкой и вращательного движения относительно осей колесных пар. Поступательное движение колес объединим с поступательным движением тележки с их общей массой m в уравнении (1). Вращательное движение колес происходит под действием только момента сил сцепления F сц R . Уравнение основного закона динамики вращательного движения (произведение момента инерции всех колес на угловое ускорение равно моменту силы) имеет вид

. (3)

При отсутствии проскальзывания колеса относительно рельса скорость точки контакта равна нулю. Значит, скорости поступательного и вращательного движений равны и противоположны: . Если это равенство продифференцировать, то получим соотношение между поступательным ускорением тележки и угловым ускорениями колеса: . Тогда уравнение (3) примет вид . Сложим это уравнение с уравнением (2) для исключения неизвестной силы сцепления. В результате получим

. (4)

Полученное уравнение совпадает с уравнением второго закона Ньютона для поступательного движения тележки с эффективной массой: , в которой уже учтен вклад инертности вращения колес в инертность тележки. В технической литературе уравнение вращательного движения колес (3) не применяют, а учитывают вращение колес введением эффективной массы. Например, для груженого вагона коэффициент инертности γ равен 1,05, а для порожнего вагона влияние инертности колес больше: γ = 1,10.

Подставив силу трения качения в уравнение (4), получим для коэффициента трения качения расчетную формулу

. (5)



Для определения коэффициента трения качения по формуле (5) следует экспериментально измерить ускорение тележки. Для этого толкнем тележку с некоторой скоростью V 0 по горизонтальным рельсам. Уравнение кинематики равнозамедленного движения имеет вид .

Путь S и время движения t можно измерить, но неизвестна начальная скорость движения V 0 . Однако установка (рис. 3) имеет семь секундомеров, измеряющих время движения от стартового фотоэлемента до следующих семи фотоэлементов. Это позволяет либо составить систему семи уравнений и исключить из них начальную скорость, либо решить эти уравнения графически. Для графического решения перепишем уравнение равнозамедленного движения, поделив его на время: .

Средняя скорость движения до каждого фотоэлемента линейно зависит от времени движения до фотоэлементов. Поэтому график зависимости <V> (t ) является прямой линией с угловым коэффициентом, равным половине ускорения (рис.4)

. (6)

Момент инерции четырех колес тележки, которые имеют форму цилиндров радиуса R при общей их массе m кол, можно определить по формуле . Тогда поправка на инертность вращения колес примет вид .

ВЫПОЛНЕНИЕ РАБОТЫ

1. Определить взвешиванием массу тележки вместе с некоторым грузом. Измерить радиус колес по поверхности катания. Записать результаты измерений в табл. 1.

Таблица 1 Таблица 2

S, м t, с , м/с
0,070
0,140
0,210
0,280
0,350
0,420
0,490

2. Проверить горизонтальность рельсов. Поставить тележку у начала рельсов так, чтобы стержень тележки был перед отверстиями стартового фотоэлемента. Включить блок питания в сеть 220 В.

3. Толкнуть тележку вдоль рельсов так, чтобы она доехала до ловушки и упала в нее. Каждый секундомер покажет время движения тележки от стартового фотоэлемента до его фотоэлемента. Повторить опыт несколько раз. Записать показания семи секундомеров в одном из опытов в табл. 2.

4. Произвести расчеты. Определить среднюю скорость движения тележки на пути от старта до каждого фотоэлемента

5. Построить график зависимости средней скорости движения до каждого фотоэлемента от времени движения. Размер графика не менее половины страницы. На осях координат указать равномерный масштаб. Около точек провести прямую линию.

6. Определить среднее значение ускорения. Для этого на экспериментальной линии как на гипотенузе построить прямоугольный треугольник. По формуле (6) найти среднее значение ускорения.

7. Рассчитать поправку на инертность вращения колес, считая их однородными дисками . Определить по формуле (5) среднее значение коэффициента трения качения <μ>.

8. Оценить погрешность измерения графическим способом

. (7)

Записать результат μ = <μ>± δμ, Р = 90%.

Сделать выводы.

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Объяснить причину возникновения силы трения качения. Какие факторы влияют на величину силы трения качения?

2. Записать закон для силы трения качения. От чего зависит коэффициент трения качения?

3. Записать уравнения динамики поступательного движения тележки по горизонтальным рельсам и вращательного движения колес. Получить уравнение движения тележки с эффективной массой.

4. Вывести формулу для определения коэффициента трения качения.

5. Объяснить суть графического метода определения ускорения тележки при качении по рельсам. Вывести формулу ускорения.

6. Объяснить влияние вращения колес на инертность тележки.


Работа 17-б


Похожая информация.