Лизосома: строение и функции, образование и особенности. Характеристика, роль и формирование клеточных лизосом Гидролазы какие клетки содержат

В данной статье будет рассмотрено строение лизосом, их функции и значение. Если переводить с греческого языка, то лизосома - это растворение тела. Это органелла, полость которой имеет кислую среду. В последней находится большое количество ферментов. Строение лизосом, химический состав и функции могут быть различными.

Главное назначение этой неотъемлемой части клетки - это внутриклеточное пищеварение (так можно объяснить наличие большого количества различных ферментов).

Впервые обнаружил этот органоид бельгийский ученый Кристиан де Дюв. Лизосомы имеются во всех клетках у млекопитающих, исключением являются - эритроциты. Эти органоиды характерны для всех эукариот. Прокариоты лишены лизосом, так как отсутствует внутриклеточное пищеварение и фагоцитоз.

Лизосомы

И так, каково же строение лизосом? Если говорить обобщенно, то органеллы представляются в виде мембранных пузырьков с кислотной средой. Образованы они из:

  • везикул;
  • эндосом.

Строение лизосом схоже с некоторыми органеллами клеток, однако есть и еще одна отличительная черта - белковые ферменты. Как уже говорилось ранее, лизосома обеспечивает внутриклеточное пищеварение, она способна расщеплять на простейшие соединения следующие полимеры:

  • белки;
  • жиры;
  • углеводы;
  • нуклеиновые кислоты.

Также ранее упоминалось, что лизосомы могут иметь разные размеры. В зависимости от места обитания их величина колеблется в пределах 0,3-0,5 мкм.

Лизосомы просто необходимы, они играют важную роль в жизнедеятельности клетки. Данные разновидности везикул обеспечивают данные процессы:

  • фагоцитоз;
  • аутофагоцитоз.

Хоть количество и внешний вид могут быть разными, наиболее часто они принимают следующие формы:

  • сферическая;
  • овальная;
  • тубулярная.

Количество может варьироваться от одной до нескольких тысяч. Например, клетки растений и грибов содержат одну большую органелу, а в животных клетках их может насчитываться до нескольких тысяч. В последнем случае лизосомы имеют меньшие размеры и не занимают более пяти процентов объема клетки.

Типы лизосом

Лизосомы, строение и функции которых мы рассматриваем в данной статье, можно строго поделить на две группы:

  • первичные;
  • вторичные.

Первичные - это только образованные, они еще не принимали участия в пищеварении, к вторичным лизосомам относятся органеллы, в которых происходит переваривание.

Так же лизосомы делятся на следующие группы:

  • гетерофагические (слияние фагосомы и первичной лизосомы);
  • аутофагическая (слияние разрушающейся органеллы с первичной лизосомой);
  • мультивезикулярное тельце (образуется путем слияния жидкости, окруженной мембраной, с первичной лизосомой);
  • остаточное тельце (лизосомы с остатками не переваренных веществ).

Функции

Мы коротко рассмотрели строение клетки лизосомы, выделили виды. Теперь отметим основные функции. Для чего нужен данный органоид клетке? К обязанностям органеллы относятся:

  • внутриклеточное пищеварение;
  • аутофагия;
  • автолиз;
  • обмен веществ.

Теперь немного подробнее о каждой функции. Ранее уже упоминалось, что лизосомы содержат огромное количество ферментов. Живые организмы отличаются процессом, который имеет название - эндоцитоз. При нем во внутреннюю полость клетки поступают различные питательные вещества, бактерии и так далее. Ферменты, содержащиеся внутри лизосом, переваривают поступающие вещества, так происходит внутриклеточное пищеварение.

Аутофагия - это процесс обновления клетки. Лизосомы способны переваривать не только те вещества, которые поступают из вне, но и производимые самими органоидами. Они способны избавляться от ненужных элементов, благотворно влияя на клетку и организм в целом.

Автолизом называют процесс самоуничтожения. Его легко проследить на примере перевоплощения головастика в лягушку. Благодаря автолизу у головастика пропадает хвост.

Так как при переваривании веществ образуются простые элементы, которые попадают во внутреннюю среду клетки, то можно говорить, что лизосомы участвуют в обмене веществ. Простейшие элементы не пропадают бесследно, а вовлекаются в обмен веществ.

Участие лизосом в пищеварении клетки

Рассматривая строение органоида лизосомы, было сказано, что внутри органеллы находятся ферменты. Благодаря ним происходит внутриклеточное пищеварение. Теперь подробнее о том, какие это ферменты, для расщепления каких веществ они нужны? Всех их можно классифицировать следующим образом:

  • эстеразы (расщепление сложных эфирных спиртов, кислоты);
  • пептид-гидролазы (белки, пептиды);
  • нуклеазы (расщепление фосфодиэфирных связей в полинуклеотидной цепи нуклеиновых кислот) ;
  • гликозидазы (расщепление углеводов).

Все эти ферменты необходимы для осуществления внутриклеточного пищеварения. Каждый выполняет свою определенную функцию.

Распространенность среди царств живой природы

Лизосомы были впервые описаны в 1955 году Кристианом де Дювом в животной клетке, а позже были обнаружены и в растительной. У растений к лизосомам по способу образования, а отчасти и по функциям близки вакуоли . Лизосомы есть также у большинства протистов (как с фаготрофным, так и с осмотрофным типом питания) и у грибов. Таким образом, наличие лизосом характерно для клеток всех эукариот . У прокариот лизосомы отсутствуют, так как у них отсутствует фагоцитоз и нет внутриклеточного пищеварения.

Признаки лизосом

Один из признаков лизосом - наличие в них ряда ферментов (кислых гидролаз), способных расщеплять белки , углеводы , липиды и нуклеиновые кислоты . К числу ферментов лизосом относятся катепсины (тканевые протеазы), кислая рибонуклеаза, фосфолипаза и др. Кроме того, в лизосомах присутствуют ферменты, которые способны отщеплять от органических молекул сульфатные (сульфатазы) или фосфатные (кислая фосфатаза) группы.

См. также

Ссылки

  • Molecular Biology Of The Cell, 4е издание, 2002 г. - учебник по молекулярной биологии на английском языке

Федеральное агентство по образованию

Пензенский государственный педагогический университет

имени В.Г.Белинского

Кафедра биохимии

Курсовая работа на тему:

«Биохимия лизосом»

Выполнила: студентка

группы БХ-31 Цибулькина И.С.

Проверил: Соловьёв В.Б.


1.Введение

2.Структура и состав лизосом

3.Образование лизосом

4.Биосинтез и транспорт лизосомных белков

5.Органеллы, образующиеся из лизосом

6.Классификация ферментов, содержащихся в лизосомах

7.Лизосомные болезни накопления

8.Заключение

9.Приложение

10.Список используемой литературы


Введение

Представление о лизосомах связаны с понятием о так называемых «микротельцах», впервые описанных Роденом, в проксимальных канальцах почки, а затем исследованных в печени при различных экспериментальных условиях Рулье и Бернгардом. Эти микротельца, значительно менее многочисленные, чем митохондрии, окружены только одной хорошо выраженной мембраной и содержат тонкозернистое вещество, которое может конденсироваться в центре, образуя непрозрачную гомогенную сердцевину. Эти микротельца часто находят вблизи желчных канальцев. Их выделяли при помощи центрифугирования и отнесли к лизосомам. Рулье и Бернгард показали, что число микротелец значительно увеличивается в печени, регенирующей после гепатэктомии или отравления химическими веществами, которые разрушают печеночные клетки (четыреххлористый углерод), а также при кормлении, возобновленном после голодания.

Термин «лизосома», обозначающий литические частицы, был введен в 1955 году Христианом де Дювом для связанных с мембранами органелл, содержащих пять кислых гидролаз, которые изучались де Дювом и его коллегами на протяжении нескольких лет. В настоящее время о лизосомах накоплено огромное количество сведений, известно около 40 типов различных гидролитических ферментов. Большое внимание уделяется исследованию ряда генетических дефектов ферментов, локализованных в этих органеллах и связанных с ними лизосомных болезней накопления.


1. Структура и состав лизосом

Лизосома (от греч. λύσις - растворяю и sōma - тело), органоид клеток животных и грибов, осуществляющий внутриклеточное пищеварение. Представляет собой окруженный одинарной мембраной пузырек диаметром 0,2-2,0мкм, содержащий как в матриксе, так и в мембране набор гидролитических ферментов (кислая фосфатаза, нуклеаза, катепсин Н (лизосомная аминопептидаза), катепсин А (лизосомная карбоксипептидаза),катепсин В, G, L, НАДФНоксидаза, коллагеназа, глюкуронидаза, глюкозидаза и др. всего около 40 типов), активных в слабокислой среде. Обычно на клетку приходится несколько сотен лизосом. В мембране лизосом находятся АТФ-зависимые протонные насосы вакуольного типа (рис.А). Они обогащают лизосомы протонами, вследствие чего для внутренней среды лизосом рН 4,5-5,0 (в то время как в цитоплазме рН 7,0-7,3). Лизосомные ферменты имеют оптимум рН около 5,0, т. е. в кислой области. При рН, близких к нейтральным, характерным для цитоплазмы, эти ферменты обладают низкой активностью. Очевидно, это служит механизмом защиты клеток от самопереваривания о том случае, если лизосомный фермент, случайно, попадет в цитоплазму.

Строение мембраны лизосом представляет собой комбинацию участков построенных по пластинчатому и мицеллярному типу. Мицеллы находятся в динамичном равновесие с пластинчатыми участками – это равновесие зависит от условий среды. Полярные группы фосфолипидов образуют поверхность мицеллы, а неполярные участки обращены внутрь. Пространство между молекулами липидов занято водой. Мицеллярные участки содержат длинные поры. Эти поры заполнены водой и могут закрываться полярными группами липидов. Подобная организация мембраны обеспечивает проницаемость не только для гидрофильных, но и для гидрофобных веществ.

Химический состав:

Неорганические соединения (Fe 3+ , свинец, кадмий, кремний)

Органические соединения (белки, полисахариды, некоторые олигосахариды – сахароза, фосфолипиды – фосфотидилхолин и фосфотидилсерин, жирные кислоты – ненасыщенные, что способствует высокой стабильности мембраны.)

2. Образование лизосом

По морфологии выделяют 4 типа лизосом:

1. Первичные лизосомы

2. Вторичные лизосомы

3. Аутофагосомы

4. Остаточные тельца

Первичные лизосомы представляют собой мелкие мембранные пузырьки, заполненные бесструктурным веществом, содержащим набор гидролаз. Маркерным ферментом для лизосом является кислая фосфотаза. Первичные лизосомы настолько мелкие, что их очень трудно отличить от мелких вакуолей на периферии зоны аппарата Гольджи. В дальнейшем первичные лизосомы сливаются с фагоцитарными или пиноцитарными вакуолями и образуют вторичные лизосомы или внутриклеточная пищеварительная вакуоль (рис. Б-3). При этом содержимое первичной лизосомы сливается с содержимым фагоцитарной или пиноцитарной вакуолей, а гидролазы первичной лизосомы получают доступ к субстратам, которые они начинают расщеплять.

Лизосомы могут сливаться друг с другом и таким путем увеличиваться в объеме, при этом усложняется их внутренняя структура. Судьба веществ, попавшивших в лизосомы, заключается в их расщеплении гидролазами до мономеров, мономеры транспортируются через мембрану лизосомы в гиалоплазму, где включаются в различные обменные процессы.

Расщепление и переваривание может идти не до конца. В этом случае в полости лизосом накапливаются непереваренные продукты, и вторичные лизосомы переходят в остаточные тельца (рис. Б-2). Остаточные тельца содержат меньше гидролитических ферментов, в них происходит уплотнение содержимого и его переотработка. Часто в остаточных тельцах наблюдается вторичная структуризация непереваренных липидов, которые образуют сложные слоистые структуры. Происходит отложение пигментных веществ.

Аутофагосомы встречаются в клетках простейших. Они относятся к вторичным лизосомам (рис. Б-1). Но в своем состояние содержат фрагменты цитоплазматических структур (остатки митохондрий, пластид, ЭПР, остатки рибосом, так же могут содержать гранулы гликогена). Процесс образования не ясен, но предполагают, что первичные лизосомы выстраиваются вокруг клеточной органеллы, сливаются друг с другом и отделяют органеллу от соседних участков цитоплазмы. Предполагают, что аутофагоцитоз связан с уничтожением сложных клеточных компонентов. В нормальных условиях число аутофагосом возрастает при метаболических стрессах. При различных повреждениях клеток аутофагоцитозу могут подвергаться целые зоны клеток.

Лизосомы присутствуют в самых разных клетках. Некоторые специализированны клетки, например лейкоциты, содержат их в особенно большом количестве. Интересно, что отдельные виды растений, в клетках которых лизосомы не обнаружены, содержат гидролитические ферменты в клеточных вакуолях, которые поэтому могут выполнять ту же функцию, что и лизосомы. Функция лизосом, по-видимому, лежит в основе таких процессов, автолиз и некроз тканей, когда ферменты освобождаются из этих органелл в результате случайных или «запрограммированных» процессов.

Естественной функцией лизосом является поставка гидролитических ферментов как для внутриклеточного, так и, возможно, для внеклеточного использования; после слияния мембран содержимое лизосом может смешиваться с содержимым фагоцитозных пузырьков, так что процессы гидролиза протекают в пространстве, обособленном от всех областей цитоплазмы, в которых находятся уязвимые для гидролиза внутриклеточные компоненты. Показано, что лизосомные ферменты могут освобождаться и во внеклеточное пространство. Продукты гидролиза могут проникать из органеллы в цитоплазму или выводиться из клетки наружу.

4. Биосинтез и транспорт лизосомных белков

Лизосомные белки синтезируются в ШЭР (рис. В), где они гликозилируются путем переноса олигосахаридных остатков. На последующей стадии, типичной для лизосомных белков, терминальные маннозные остатки (Man) фосфорилируются по C-6 (на схеме справа). Реакция протекает в две стадии. Сначала на белок переносится GlcNAc-фосфат, а затем идет отщепление GlcNAc. Таким образом, лизосомные белки в процессе сортировки приобретают концевой остаток маннозо-6-фосфата (Man-6-P, 2).

В мембранах аппарата Гольджи имеются молекулы-рецепторы, специфичные для Man-6-P-остатков и за счет этого специфически узнающие и селективно связывающие лизосомные белки (3). Локальное накопление этих белков происходит с помощью клатрина. Этот белок позволяет вырезать и транспортировать подходящие мембранные фрагменты в составе транспортных везикул к эндолизосомам (4), которые затем созревают с образованием первичных лизосом (5) в заключение от Man-6-P отщепляется фосфатная группа (6).

Man-6-P-рецепторы используются вторично в процессе рецикла. Снижение рН в эндолизосомах приводит к диссоциации белков от рецепторов (7). Затем рецепторы с помощью транспортных везикул переносятся обратно в аппарат Гольджи (8).


5. Органеллы, образуемые из лизосом

В некоторых дифференцированных клетках лизосомы могут выполнять специфические функции, образуя дополнительные органеллы. Все дополнительные функции связаны с секрецией веществ.

Органеллы Клетки Функции
Меланосомы меланоциты, ретинальный и
пигментный эпителий
образование, хранение и транспорт меланина
Тромбоцитные гранулы тромбоциты, мегакариоциты освобождение АТФ, АДФ, серотонина и кальция
Ламелярные тельца эпителий легких типа II, цитотоксические Т хранение и секреция сурфактанта необходимого для работы легких
Лизирующие гранулы лимфоциты, NK клетки разрушение клеток инфицированных вирусом или опухолевы
ГКГ класс II дендритные
клетки, В лимфоциты, макрофаги и др.
Изменение и представление антигенов для CD4+ T лимфоцитов для иммунной регуляции
Базофильные гранулы базофилы, mast клетки запускают высвобождение гистаминов и других воспалительных стимулов
Азурофильные гранулы нейтрофилы, эозинофилы высвобождают микробицидные и воспалительные агенты
Остеокластые гранулы остеокласты разрушение костей
Тельца Вейбеля-Палладе эндотелиальные клетки созревание и регулируемый выброс фактора Виллебрандта в кровь
а-гранулы тромбоцитов Тромбоциты, мегакариоциты выброс фибриногена и фактора Виллебрандта для адгезии тромбоцитов и свертывания крови

6. Классификация ферментов, содержащихся в лизосомах

О лизосомах уже упоминалось в разделах, посвященных эндоцитозу и аппарату Гольджи.

Наличие лизосом разного типа в клетках отражает процесс переноса гидролитических ферментов, необходимых для внутриклеточного расщепления экзогенных (энзоцитоз) или эндогенных (аутофагоцитоз) полимеров, процесс секреции, но как бы направленный “внутрь” клетки.

Сходство лизосомных вакуолей с секреторными находит свое отражение не только в общности их происхождения, но иногда и в общности конечного этапа их активности. В некоторых случаях лизосомы могут подходить к плазматической мембране и выбрасывать свое содержимое в наружную среду. Так, у клеток гриба нейроспоры лизосомы, выбрасывая гидролазы из клетки, обеспечивают внеклеточный протеолиз. Возможно, что часть лизосом макрофагов таким же образом обеспечивает внеклеточный гидролиз при воспалительных и резорбционных процессах. При оплодотворении акросома спермия, вакуоль, аналогичная лизосоме и содержащая гидролитические ферменты гиалуронидазу и протеазы, сливается с плазматической мембраной спермия, изливается на поверхность яйцеклетки. Освободившиеся из вакуоли ферменты расщепляют полисахаридные и белковые оболочки ооцита, давая возможность слиться двум половым клеткам.

Лизосомы не представляют собой в клетках самостоятельных структур, они образуются за счет активности эндоплазматического ретикулума и аппарата Гольджи и в этом отношении напоминают секреторные вакуоли и что основная их роль заключается в участии в процессах внутриклеточного расщепления как экзогенных, так и эндогенных биологических макромолекул.

Общая характеристика лизосом

Лизосомы как мембранные внутриклеточные частицы были открыты биохимиками (Де Дюв, 1955). При изучении легкой подфракции макросом из гомогенатов печени крысы было найдено, что эта подфракция (в отличие от основной фракции макросом - митохондриальной фракции) обладает группой кислых гидролитических ферментов (гидролаз), расщепляющих белки, нуклеиновые кислоты, полисахариды и липиды. Создалось впечатление, что эти ферменты содержатся в особого рода цитоплазматических частицах, лизосомах. Оказалось, что ферменты изолированных лизосом проявляют свою активность только в том случае, если предварительно вызывается повреждение самих лизосом, либо воздействием осмотического шока или детергентов, либо замораживанием и оттаиванием препаратов. На основании этого было сделано заключение, что лизосомы окружены липопротеидной мембраной, которая препятствует доступу находящихся снаружи субстратов к ферментам, находящимся внутри лизосом.

Характерной чертой лизосом является то, что они содержат около 40 гидролитических ферментов: протеиназы, нуклеазы, гликозидазы, фосфорилазы, фосфатазы, сульфитазы, оптимум действия которых осуществляется при рН 5. В лизосомах кислое значение среды создается из-за наличия в их мембранах H + помпы, зависимой от АТФ. Кроме того, в мембране лизосом встроены белки-переносчики для транспорта из лизосом в гиалоплазму продуктов гидролиза: мономеры расщепленных молекул - аминокислоты, сахара, нуклеотиды, липиды. При ознакомлении с работой лизосом, всегда возникает вопрос, почему же эти мембранные образования не переваривают сами себя? Вероятнее всего, что мембранные элементы лизосом защищены от действия кислых гидролаз олигосахаридными участками, которые или не узнаются лизосомными ферментами, либо просто мешают гидролазам взаимодействовать с ними. Так или иначе мембранные компоненты лизосом очень устойчивы к гидролазам, содержащимся внутри лизосомных пузырьков.

Наличие некоторых гидролаз можно выявить гистохимическими методами. Так одной из характерных гидролаз, выявляемых как в световом так и в электронном микроскопе, является кислая фосфатаза, по наличию которой можно четко определить, является тот или иной мембранный пузырек лизосомой.

Под электронным микроскопом видно, что фракция лизосом состоит из очень пестрого класса пузырьков размером 0,2-0,4 мкм (для клеток печени), ограниченных одиночной мембраной (толщина ее около 7 нм), с очень разнородным содержанием внутри (рис. 187, 188). Во фракции лизосом встречаются пузырьки с гомогенным, бесструктурным содержимым, встречаются пузырьки, заполненные плотным веществом, содержащим в свою очередь вакуоли, скопления мембран и плотных однородных частиц; часто можно видеть внутри лизосом не только участки мембран, но и фрагменты митохондрий и ЭР. Иными словами, эта фракция по морфологии оказалась крайне неоднородной, несмотря на постоянство присутствия гидролаз.

Сходные по морфологии частицы были описаны еще ранее в разных тканях многих животных. Однако цитологи не могли выяснить функциональные значения этих полиморфных частиц. И только сочетание биохимических, цитохимических и электронно-микроскопических методов исследований позволило достаточно подробно разобраться в строении, происхождении и функционировании клеточных лизосом.

Морфологическая гетерогенность лизосом

Было обнаружено, что среди различных по морфологии лизосомных частиц можно выделить по крайней мере четыре типа: первичные лизосомы, вторичные лизосомы, аутофагосомы и остаточные тельца (рис. 189). Пестрота же морфологии лизосом вызвана тем, что эти частицы участвуют в процессах внутриклеточного переваривания, образуют сложные пищеварительные вакуоли как экзогенного (внеклеточного), так и эндогенного происхождения.

Первичные лизосомы представляют собой мелкие мембранные пузырьки размером около 100 нм, заполненные бесструктурным веществом, содержащим набор гидролаз и в том числе кислую фосфатазу, - маркерный для лизосом фермент. Эти мелкие вакуоли, первичные лизосомы, практически очень трудно отличить от мелких вакуолей на периферии зоны аппарата Гольджи. Часть из них несет клатриновую оболочку. Более того, вакуоли этой периферической части АГ также содержат кислую фосфатазу. Прослеживая процесс синтеза и локализацию этого фермента в клетках, было найдено, что местом его синтеза, как и следовало ожидать, является гранулярный ретикулум, затем этот фермент появляется в проксимальных участках диктиосом, а потом - в мелких вакуолях по периферии диктиосомы и, наконец, выявляется в первичных лизосомах. Весь путь образования первичных лизосом очень сходен с образованием зимогеновых гранул в клетках поджелудочной железы, за исключением последнего этапа - выбрасывания из клетки.

С помощью ряда точных экспериментов установили, что в дальнейшем первичные лизосомы сливаются с фагоцитарными или пиноцитозными вакуолями, эндосомами, образуя вторичную лизосому или внутриклеточную пищеварительную вакуоль. При этом содержимое первичной лизосомы сливается с полостью эндоцитозной вакуоли, и гидролазы первичной лизосомы получают доступ к субстратам, которые они и начинают расщеплять.

При слиянии первичной лизосомы с эндоцитозной вакуолью происходит диссоциация комплексов М-6-Ф-рецептор-гидролаза, из-за кислой среды внутри вторичной лизосомы. Затем уже свободный фермент после потери фосфатной группы активируется и вступает в работу. Освободившиеся мембранные рецепторы переходят в мелкие пузырьки, отщепляющиеся от вторичной лизосомы, и уходят снова в транс-участок аппарата Гольджи, т.е. происходит их рециклизация (см. рис. 184).

Процесс слияния первичных лизосом с эндоцитозными вакуолями прослежен очень подробно. Так, если ввести в организм мыши чужеродный белок пероксидазу, то она начинает накапливаться в эндоцитозных вакуолях. С помощью гистохимической реакции можно выявить пероксидазу в таких вакуолях в электронном микроскопе. Было замечено, что к этим вакуолям подходят первичные лизосомы, обладающие кислой фосфатазой, продукты активности которой также выявляются гистохимически. Затем происходит слияние мембран вакуолей, и в слившемся объеме новой вакуоли обнаруживается как пероксидазная, так и фосфатазная активность. По своей морфологии такая вакуоль представляет собой лизосому, содержащую компоненты, захваченные в процессе эндоцитоза. Это вторичная лизосома. Разнообразие по величине и по структуре клеточных лизосом связано в первую очередь с разнообразием вторичны лизосом - продуктов слияния эндоцитозных вакуолей с первичными лизосомами. Таким образом, вторичные лизосомы представляют собой не что иное, как внутриклеточные пищеварительные вакуоли, ферменты которых доставлены с помощью мелких первичных лизосом. Поэтому от типа поглощенных веществ или частичек зависит размер и внутренняя структура таких лизосом.

Лизосомы могут сливаться друг с другом и таким путем увеличиваться в объеме, при этом усложняется их внутренняя структура. Так, давая клеткам культуры ткани в среду коллоидное железо, можно видеть, как частички его (хорошо выявляемые в электронном микроскопе) сначала появляются в фагоцитозных вакуолях, а затем обнаруживаются во вторичных лизосомах. Если через некоторое время снова клетке дать инородное вещество, например коллоидное золото (частички которого отличаются по морфологии от частиц коллоидного железа), то динамика его появления в лизосомах будет такая же. Но появятся лизосомы, одновременно содержащие гранулы как коллоидного железа, так и коллоидного золота.

Судьба поглощенных биогенных веществ, попавших в состав лизосомы, заключается в их расщеплении гидролазами до мономеров и в транспорте этих мономеров через мембрану лизосомы в состав гиалоплазмы, где они реутилизируются, включаются в различные синтетические и обменные процессы.

Кроме участия в переваривании поглощенных частиц и растворов лизосомы могут играть роль внутриклеточных структур, участвующих в изменении клеточных продуктов. Так, в клетках щитовидной железы в ЭР синтезируется тироглобулин, белок-предшественник тироидного гормона. Тироглобулин с помощью АГ выводится из клеток в полость фолликулов щитовидной железы. При гормональной стимуляции иодированный тироглобулин снова попадает в железистую клетку путем пиноцитоза. Пиноцитозные вакуоли, содержащие тироглобулин, сливаются с первичными лизосомами, ферменты которых вызывают частичный гидролиз тироглобулина, приводящий к образованию тироксина - тироидного гормона, который затем выводится из клетки, секретируется, и попадает в кровеносное русло.

Однако расщепление, переваривание биогенных макромолекул внутри лизосом может идти в ряде клеток не до конца. В этом случае в полостях лизосом происходит накопление непереваренных продуктов, происходит переход вторичных лизосом в телолизосомы , или остаточные тельца . Остаточные тельца уже содержат меньше гидролитических ферментов, в них происходит уплотнение содержимого, его перестройка. Часто в остаточных тельцах наблюдается вторичная структуризация непереваренных липидов, которые образуют сложные слоистые структуры. Там же происходит отложение пигментных веществ. У человека при старении организма в клетках мозга, печени и в мышечных волокнах в телолизосомах происходит отложение “пигменте старения” - липофусцина.

Аутолизосомы (аутофагосомы) постоянно встречаются в клетках простейших, растений и животных. По своей морфологии их относят к вторичным лизосомам, но с тем отличием, что в составе этих вакуолей встречаются фрагменты или даже целые цитоплазматические структуры, такие, как митохондрии, пластиды, элементы ЭР, рибосомы, гранулы гликогена и т.д. Процесс образования аутофагосом еще недостаточно ясен. По одним представлениям, первичные лизосомы могут выстраиваться вокруг клеточной органеллы, сливаться друг с другом и таким образом отделять ее от соседних участков цитоплазмы: участок оказывается отделенным мембраной и заключенным внутри такой сложной лизосомы (см. рис. 189).

Есть предположение, что процесс аутофагоцитоза связан с отбором и уничтожением измененных, “сломанных” клеточных компонентов. В этом случае лизосомы выполняют роль внутриклеточных чистильщиков, контролирующих дефектные структуры. Такой автофагии подвергаются митохондрии печени, где время жизни отдельной митохондрии составляет 10 дней. Интересно, что в нормальных условиях число аутофагосом увеличивается при метаболических стрессах (например, при гормональной индукции активности клеток печени). Значительно возрастает число аутофагосом при различных повреждениях клеток; в этом случае автофагоцитозу могут подвергаться целые зоны внутри клеток.

Лизосомные патологии

Увеличение числа лизосом в клетках при патологических процессах - обычное явление. Это наблюдение послужило появлению представления о том, что лизосомы могут играть активную роль при гибели клеток. Однако в большинстве случаев смерти клетки не предшествовало освобождение гидролаз из лизосом. Более того, даже при разрыве мембраны лизосомные гидролазы должны терять свою активность, попадая в цитоплазму с нейтральным значением рН. Ферменты лизосом, несомненно, участвуют в автолизе погибших клеток, но скорее всего это вторичное явление, а не причина гибели самих клеток.

Существует ряд врожденных заболеваний, которые называют лизосомными “болезнями накопления”. Отличительным признаком этих болезней является то, что под световым микроскопом в клетках наблюдается множество вакуолей. Например, при болезни Помпе происходит накопление гликогена в лизосомах, где он не расщепляется из-за отсутствия у таких больных фермента кислой -гликозидазы. Многие “болезни накопления” возникают вследствие первичной генной мутации, приводящей к потере активности отдельных ферментов, участвующих в функционировании лизосом.

Сейчас, к сожалению, известно уже более 25 таких генетических заболеваний, связанных с патологией лизосом.

Лизосомальные ферменты, высвобождающиеся в процессе фагоцитоза и лизиса клеток и обладающие повреждающим действием, также участвуют в альтерации ткани в месте аллергической реакции замедленного типа.

Активность клеток, участвующих в аллергической реакции IV типа (лимфоциты, макрофаги, гранулоциты), как и тучных клеток и базофилов, контролируется циклазной системой. Соединения, влияющие на уровень циклических нуклеотидов (катехоламины, метилксантины, простагландины, гистамин), могут модулировать течение этой реакции.

Таким образом, в развитии аллергической реакции IV типа задействованы клетки различных типов. Из числа медиаторов, вырабатываемых в процессе реакции, можно выделить факторы, обеспечивающие лекализацию участвующих клеток (вызывающие воспалительную реакцию сосудов, хемотаксис различных клеток и их мобилизацию в очаге), факторы, активирующие привлеченные клетки, и факторы, обладающие непосредственно повреждающим действием. Некоторые медиаторы можно отнести к различным группам, так как они дают одновременно несколько эффектов.

Аллергическая реакция II (цитотоксический) и III (иммунокомплексный) типов протекает с участием комплемента. Он представляет собой комплекс белков, каскадно активирующихся в результате иммунной реакции и дающих различные биологические эффекты. Отдельные компоненты комплемента обозначаются цифрой.

Образование комплекса антиген — антитело приводит к соединению трех неактивных субъединиц 1 компонента комплемента C1q, C1r и C1s, в результате чего образуется активированная фракция, обозначаемая черточкой над цифрой (C1). C1 расщепляет С2 на С2а и C2b, a С4 на С4а и С4b, в результате образуется комплекс С2а4b, представляющий собой фермент С3-конвертазу. Последний катализирует реакцию С3→С3а→С3b. На следующем этапе образуется комплекс С2а4b3b, который является 3-м ферментом, расщепляющим C5 на С5а и С5b, а также активирующим С6, C7, С8 и C9.

Наряду с описанным классическим путем активации комплемента существует альтернативный, активирующий систему начиная с СЗ. Активация комплемента по альтернативному пути инициируется неиммунными факторами, но этот вариант реакции может встречаться при аллергических заболеваниях наряду с классическим [Дворецкий Л. И. и др., 1984].

Активные компоненты комплемента выполняют ряд медиаторных функций при аллергическом воспалении. С3а, С5а, С567 являются хемотаксическими факторами. Включение С56789 в цитоплазматическую мембрану клетки-мишени приводит к ее лизису.

Комплекс антиген — антитело — С3b соединяется с рецептором к С3b, присутствующим на плазмолемме нейтрофилов, моноцитов и лимфоцитов («иммунное прилипание»), с последующим фагоцитозом иммунных комплексов. С3а и С5а являются анафилотоксинами, они вызывают высвобождение медиаторов тучными клетками и базофилами. Таким образом, комплемент, а также высвобождающиеся лизосомальные ферменты можно условно рассматривать как медиаторы аллергической реакции II и III типов [Пыцкий В. И. и др., 1984].

«Аллергические болезни у детей», проф. М.Я.Студеникин

Генетически факторы, обусловливающие предрасположенность к аллергическим болезням, несомненно существуют. Ребенок имеет больше шансов заболеть (40 — 60%), если аллергия проявляется у обоих родителей. Риск максимален (60 — 80%), если у обоих родителей поражен один и тот же орган-мишень (кожа, дыхательные пути или желудочно-кишечный тракт). Если аллергическая болезнь имеется лишь у одного из родителей или только…

Хемотаксические факторы привлекают к месту реакции различные виды клеток и представляют собой полипептиды или белки молекулярной массы 1500 — 150 000. Выделены факторы, избирательно вызывающие таксис нейтрофилов, макрофагов, эозинофилов, базофилов. Фактор, угнетающий миграцию макрофагов — MIF (migration inhibition factor) — соединение белковой природы, вырабатывается сенсибилизированными лимфоцитами при контакте с антигеном. Он тормозит миграцию макрофагов, способствуя…

Установлена определенная корреляция между аллергическими заболеваниями и присутствием HLA-антигенов . Так, например, аллергия к сорным травам чаще наблюдается у лиц с гаплотипом HLA-А3, В7, DW2 (относительный риск 3,5), а корреляция между наличием HLA-DW2 и сенсибилизацией к пыльце амброзии настолько выражена, что относительный риск равен 65. Склонность к полисенсибилизации (например, аллергии к домашней…

Последние достижения клинической иммунологии создают возможности поиска конкретных иммунологических механизмов, участвующих в возникновении и развитии аллергических болезней, в частности бронхиальной астмы у детей, и способствуют пересмотру взглядов на сущность изменений в организме при этой патологии. В классификации Gell, Coombs (1968) выделено 4 типа аллергических реакций соответственно тканевым повреждениям. Как показано более поздними работами, иммунологические изменения…

Первыми проявлениями атопии в раннем возрасте становятся признаки пищевой аллергии (аллергодерматозы, дерматореспираторный синдром, бронхиальная астма). Пищевой сенсибилизации у детей раннего возраста благоприятствуют повышенная проницаемость гистогематических барьеров и недостаточная функция желез пищеварительной системы [Ногаллер А. М., 1975]. В ряде случаев пищевая аллергия у грудных детей может быть обусловлена присутствием в женском молоке антигенов коровьего молока, что…