Кристаллический кремний физические свойства. Кремний и его целебные свойства. Нахождение в природе: месторождения

Как самостоятельный химический элемент кремний стал известен человечеству всего лишь в 1825 году. Что, конечно, не мешало применять соединения кремния в таком количестве сфер, что проще перечислить те, где элемент не используется. Данная статья прольет свет на физические, механические и полезные химические свойства кремния и его соединений, области применения, также мы расскажем о том, как влияет кремний на свойства стали и иных металлов.

Для начала давайте остановимся на общей характеристике кремния. От 27,6 до 29,5% массы земной коры составляет кремний. В морской воде концентрация элемента тоже изрядная – до 3 мг/л.

По распространенности в литосфере кремний занимает второе почетное место после кислорода. Однако наиболее известная его форма – кремнезем, является диоксидом, и именно его свойства и стали основой для столь широкого применения.

О том, что такое кремний, расскажет этот видеосюжет:

Понятие и особенности

Кремний – неметалл, однако при разных условиях может проявлять и кислотные, и основные свойства. Является типичным полупроводником и чрезвычайно широко используется в электротехнике. Физические и химические его свойства во многом определяются аллотропным состоянием. Чаще всего дело имеют с кристаллической формой, поскольку ее качества более востребованы в народном хозяйстве.

  • Кремний – один из базовых макроэлементов в человеческом теле. Его нехватка губительно сказывается на состоянии костной ткани, волос, кожи, ногтей. Кроме того, кремний оказывает влияние на работоспособность иммунной системы.
  • В медицине элемент, вернее говоря, его соединения нашли свое первое применение именно в этом качестве. Вода из колодцев, выложенных кремнием, отличались не только чистотой, но и положительно сказывалась на стойкости к инфекционным болезням. Сегодня соединение с кремнием служат основой для препаратов против туберкулеза, атеросклероза, артрита.
  • В целом неметалл малоактивен, однако и в чистом виде встретить его сложно. Связано это с тем, что на воздухе он быстро пассивируется слоем диоксида и перестает реагировать. При нагревании химическая активность увеличивается. В результате человечество гораздо ближе знакомо с соединениями вещества, а не с ним самим.

Так, кремний образует сплавы практически со всеми металлами – силициды. Все они отличаются тугоплавкостью и твердостью и применяются на соответствующих участках: газовые турбины, нагреватели печей.

Размещается неметалл в таблице Д. И. Менделеева в 6 группе вместе с углеродом, германием, что указывает на определенную общность с этими веществами. Так, с углеродом его «роднит» способность к образованию соединений по типу органических. При этом кремний, как и германий может проявить свойства металла в некоторых химических реакциях, что используется в синтезе.

Плюсы и минусы

Как и всякое другое вещество с точки зрения применения в народном хозяйстве, кремний обладает определенными полезными или не слишком качествами. Важны они именно для определения области использования.

  • Немалым достоинством вещества является его доступность . В природе он, правда, находится не в свободном виде, но все же, технология получения кремния не так уж и сложна, хотя и энергозатратна.
  • Второе важнейшее достоинство – образование множества соединений с необыкновенно полезными свойствами. Это и силаны, и силициды, и диоксид, и, конечно, разнообразнейшие силикаты. Способность кремния и его соединений образовывать сложные твердые растворы практически бесконечна, что позволяет бесконечно же получать самые разные вариации стекла, камня и керамики.
  • Полупроводниковые свойства неметалла обеспечивает ему место базового материала в электро- и радиотехнике.
  • Неметалл является нетоксичным , что допускает применение в любой отрасли промышленности, и при этом не превращает технологический процесс в потенциально опасный.

К недостаткам материала можно отнести лишь относительную хрупкость при хорошей твердости. Кремний не используется для несущих конструкций, но зато это сочетание позволяет обрабатывать должным образом поверхность кристаллов, что важно для приборостроения.

Давайте теперь поговорим про основные свойства кремния.

Свойства и характеристики

Поскольку в промышленности чаще всего эксплуатируется кристаллический кремний, то именно его свойства и являются более важными, и именно они и приводятся в технических характеристиках. Физические свойства вещества таковы:

  • температура плавления – 1417 С;
  • температура кипения – 2600 С;
  • плотность составляет 2,33 г/куб. см, что свидетельствует о хрупкости;
  • теплоемкость, как и теплопроводность не постоянны даже на самых чистых пробах: 800 Дж/(кг·К), или 0,191 кал/(г·град) и 84-126 вт/(м·К), или 0,20-0,30 кал/(см·сек·град) соответственно;
  • прозрачен для длинноволнового ИК-излучения, что используется в инфракрасной оптике;
  • диэлектрическая проницаемость – 1,17;
  • твердость по шкале Мооса – 7.

Электрические свойства неметалла сильно зависят от примесей. В промышленности эту особенность используют, модулируя нужный тип полупроводника. При нормальной температуре кремний хрупок, но при нагревании выше 800 С возможна пластическая деформация.

Свойства аморфного кремния разительно отличаются: он сильно гигроскопичен, намного активнее вступает в реакцию даже при нормальной температуре.

Структура и химический состав, а также свойства кремния рассмотрены в видеоролике ниже:

Состав и структура

Кремний существует в двух аллотропных формах, одинаково устойчивых при нормальной температуре.

  • Кристаллический имеет вид темно-серого порошка. Вещество, хотя и имеет алмазоподобную кристаллическую решетку, является хрупким – из-за чересчур длинной связи между атомами. Интерес представляют его свойства полупроводника.
  • При очень высоких давлениях можно получить гексагональную модификацию с плотностью 2,55 г/куб. см. Однако эта фаза практического значения пока не нашла.
  • Аморфный – буро-коричневый порошок. В отличие от кристаллической формы намного активнее вступает в реакцию. Связано это не столько с инертностью первой формы, сколько с тем, что на воздухе вещество покрывается слоем диоксида.

Кроме того, необходимо учитывать и еще один тип классификации, связанный с величиной кристалла кремния, которые в совокупности образуют вещество. Кристаллическая решетка, как известно, предполагают упорядоченность не только атомов, но и структур, которые эти атомы образуют – так называемый дальний порядок. Чем он больше, тем более однородным по свойствам будет вещество.

  • Монокристаллический – образец представляет собой один кристалл. Структура его максимально упорядочена, свойства однородны и хорошо предсказуемы. Именно такой материал наиболее востребован в электротехнике. Однако он же относится к самому дорогому виду, поскольку процесс его получения сложен, а скорость роста низка.
  • Мультикристаллический – образец составляет некоторое количество крупных кристаллических зерен. Границы между ними формируют дополнительные дефектные уровни, что снижает производительность образца, как полупроводника и приводит к более быстрому износу. Технология выращивания мультикристалла проще, потому и материал дешевле.
  • Поликристаллический – состоит из большого количества зерен, расположенных хаотически относительно друг друга. Это наиболее чистая разновидность промышленного кремния, применяется в микроэлектронике и солнечной энергетике. Довольно часто используется в качестве сырья для выращивания мульти- и монокристаллов.
  • Аморфный кремний и в этой классификации занимает отдельную позицию. Здесь порядок расположения атомов удерживается только на самых коротких дистанциях. Однако в электротехнике он все же используется в виде тонких пленок.

Производство неметалла

Получить чистый кремний не так уж и просто, учитывая инертность его соединений и высокую температуру плавления большинства из них. В промышленности чаще всего прибегают к восстановлению углеродом из диоксида. Проводят реакцию в дуговых печах при температуре 1800 С. Таким образом получают неметалл чистотой в 99,9%, что для его применения недостаточно.

Полученный материал хлорируют с тем, чтобы получить хлориды и гидрохлориды. Затем соединения очищают всеми возможными методами от примесей и восстанавливают водородом.

Очистить вещество можно и за счет получения силицида магния. Силицид подвергают действию соляной или уксусной кислоты. Получают силан, а последний очищают различными способами – сорбционным, ректификацией и так далее. Затем силан разлагают на водород и кремний при температуре в 1000 С. В этом случае получают вещество с долей примеси 10 -8 –10 -6 %.

Применение вещества

Для промышленности наибольший интерес представляют электрофизические характеристики неметалла. Его монокристаллическая форма является непрямозонным полупроводником. Свойства его определяются примесями, что позволяет получать кристаллы кремния с заданными свойствами. Так, добавка бора, индия дает возможность вырастить кристалл с дырочной проводимостью, а введение фосфора или мышьяка – кристалл с электронной проводимостью.

  • Кремний в буквальном смысле слова служит основой современной электротехники. Из него изготавливают транзисторы, фотоэлементы, интегральные схемы, диоды и так далее. Причем функциональность прибора определяет практически всегда только приповерхностный слой кристалла, что обуславливает весьма специфические требования именно к обработке поверхности.
  • В металлургии технический кремний применяют и как модификатор сплавов – придает большую прочность, и как компонент – в , например, и как раскислитель – при производстве чугуна.
  • Сверхчистый и очищенный металлургический составляют основу солнечной энергетики.
  • Диоксид неметалла встречается в природе в очень разных формах. Его кристаллические разновидности – опал, агат, сердолик, аметист, горный хрусталь, нашли свое место в ювелирном деле. Не столь привлекательные внешне модификации – кремень, кварц, используются и в металлургии, и в строительстве, и в радиоэлектротехнике.
  • Соединение неметалла с углеродом – карбид, применяется и в металлургии, и в приборостроении, и в химической промышленности. Он является широкозональным полупроводником, отличается высокой твердостью – 7 по шкале Мооса, и прочностью, что и позволяет применять его в качестве абразивного материала.
  • Силикаты – то есть, соли кремниевой кислоты. Неустойчивы, легко разлагаются под действием температуры. Примечательность их в том, что они образуют многочисленные и разнообразные соли. А вот последние являются основой при производстве стекла, керамики, фаянса, хрусталя, и . Можно смело сказать, что современное строительство зиждется на разнообразных силикатах.
  • Стекло представляет здесь наиболее интересный случай. Основой его служат алюмосиликаты, но ничтожные примеси других веществ – обычно оксидов, придают материалу массу разных свойств, в том числе и цвет. – , фаянс, фарфор, по сути, имеет ту же формулу, хотя и с другим соотношением компонентов, и ее разнообразие тоже поразительно.
  • Неметалл обладает еще одной способностью: образует соединения по типу углеродных, в виде длинной цепочки из атомов кремния. Такие соединения носят название кремнийорганических. Сфера их применения не менее известна – это силиконы, герметики, смазки и так далее.

Кремний – очень распространенный элемент и имеет необыкновенно большое значение в очень многих сферах народного хозяйства. Причем активно используется не только само вещество, но все его разнообразные и многочисленные соединения.

Данное видео расскажет о свойствах и применении кремния:

Соединения Кремния, широко распространенные на земле, были известны человеку с каменного века. Использование каменных орудий для труда и охоты продолжалось несколько тысячелетий. Применение соединений Кремния, связанное с их переработкой, - изготовление стекла - началось около 3000 лет до н. э. (в Древнем Египте). Раньше других известное соединение Кремния - оксид SiO 2 (кремнезем). В 18 веке кремнезем считали простым телом и относили к "землям" (что и отражено в его названии). Сложность состава кремнезема установил И. Я. Берцелиус. Он же впервые, в 1825, получил элементарный Кремний из фтористого кремния SiF 4 , восстанавливая последний металлическим калием. Новому элементу было дано название "силиций" (от лат. silex - кремень). Русское название ввел Г. И. Гесс в 1834.

Распространение Кремния в природе. По распространенности в земной коре Кремний - второй (после кислорода) элемент, его среднее содержание в литосфере 29,5% (по массе). В земной коре Кремний играет такую же первостепенную роль, как углерод в животном и растительном мире. Для геохимии Кремния важна исключительно прочная связь его с кислородом. Около 12% литосферы составляет кремнезем SiO 2 в форме минерала кварца и его разновидностей. 75% литосферы слагают различные силикаты и алюмосиликаты (полевые шпаты, слюды, амфиболы и т. д.). Общее число минералов, содержащих кремнезем, превышает 400.

При магматических процессах происходит слабая дифференциация Кремния: он накапливается как в гранитоидах (32,3%), так и в ультраосновных породах (19%). При высоких температуpax и большом давлении растворимость SiO 2 повышается. Возможна его миграция и с водяным паром, поэтому для пегматитов гидротермальных жил характерны значительные концентрации кварца, с которым нередко связаны и рудные элементы (золото-кварцевые, кварцево-касситеритовые и других жилы).

Физические свойства Кремния. Кремний образует темно-серые с металлическим блеском кристаллы, имеющие кубическую гранецентрированную решетку типа алмаза с периодом а = 5.431Å, плотностью 2,33 г/см 3 . При очень высоких давлениях получена новая (по-видимому, гексагональная) модификация с плотностью 2,55 г/см 3 . Кремний плавится при 1417 °С, кипит при 2600 °С. Удельная теплоемкость (при 20-100 °С) 800 Дж/(кг·К), или 0,191 кал/(г·град); теплопроводность даже для самых чистых образцов не постоянна и находится в пределах (25 °С) 84-126 вт/(м·К), или 0,20-0,30 кал/(см·сек·град). Температурный коэффициент линейного расширения 2,33·10 -6 К -1 , ниже 120 К становится отрицательным. Кремний прозрачен для длинноволновых ИК-лучей; показатель преломления (для λ = 6 мкм) 3,42; диэлектрическая проницаемость 11,7. Кремний диамагнитен, атомная магнитная восприимчивость -0,13-10 -6 . Твердость Кремния по Моосу 7,0, по Бринеллю 2,4 Гн/м 2 (240 кгс/мм 2), модуль упругости 109 Гн/м 2 (10 890 кгс/мм 2), коэффициент сжимаемости 0,325·10 -6 см 2 /кг. Кремний хрупкий материал; заметная пластическая деформация начинается при температуре выше 800°С.

Кремний - полупроводник, находящий большое применение. Электрические свойства Кремния очень сильно зависят от примесей. Собственное удельное объемное электросопротивление Кремния при комнатной температуре принимается равным 2,3·10 3 ом·м (2,3·10 5 ом·см).

Полупроводниковый Кремний с проводимостью р-типа (добавки В, Al, In или Ga) и n-типа (добавки Р, Bi, As или Sb) имеет значительно меньшее сопротивление. Ширина запрещенной зоны по электрическим измерениям составляет 1,21 эв при 0 К и снижается до 1,119 эв при 300 К.

Химические свойства Кремния. В соответствии с положением Кремния в периодической системе Менделеева 14 электронов атома Кремния распределены по трем оболочкам: в первой (от ядра) 2 электрона, во второй 8, в третьей (валентной) 4; конфигурация электронной оболочки 1s 2 2s 2 2p 6 3s 2 3p 2 . Последовательные потенциалы ионизации (эв): 8,149; 16,34; 33,46 и 45,13. Атомный радиус 1,ЗЗÅ, ковалентный радиус 1,17Å, ионные радиусы Si 4+ 0,39Å, Si 4- 1,98Å.

В соединениях Кремний (аналогично углероду) 4-валентен. Однако, в отличие от углерода, Кремний наряду с координационным числом 4 проявляет координационное число 6, что объясняется большим объемом его атома (примером таких соединений являются кремнефториды, содержащие группу 2-).

Химическая связь атома Кремния с другими атомами осуществляется обычно за счет гибридных sр 3 -орбиталей, но возможно также вовлечение двух из его пяти (вакантных) 3d-орбиталей, особенно когда Кремний является шестикоординационным. Обладая малой величиной электроотрицательности, равной 1,8 (против 2,5 у углерода; 3,0 у азота и т. д.), Кремний в соединениях с неметаллами электроположителен, и эти соединения носят полярный характер. Большая энергия связи с кислородом Si - О, равная 464 кДж/молъ (111 ккал/молъ), обусловливает стойкость его кислородных соединений (SiO 2 и силикатов). Энергия связи Si - Si мала, 176 кДж/молъ (42 ккал/моль); в отличие от углерода, для Кремния не характерно образование длинных цепей и двойной связи между атомами Si. На воздухе Кремний благодаря образованию защитной оксидной пленки устойчив даже при повышенных температурах. В кислороде окисляется начиная с 400 °С, образуя оксид кремния (IV) SiO 2 . Известен также оксид кремния (II) SiO, устойчивый при высоких температурах в виде газа; в результате резкого охлаждения может быть получен твердый продукт, легко разлагающийся на тонкую смесь Si и SiO 2 . Кремний устойчив к кислотам и растворяется только в смеси азотной и фтористоводородной кислот; легко растворяется в горячих растворах щелочей с выделением водорода. Кремний реагирует с фтором при комнатной температуре, с остальными галогенами - при нагревании с образованием соединений общей формулы SiX 4 . Водород непосредственно не реагирует с Кремнием, и кремневодороды (силаны) получают разложением силицидов (см. ниже). Известны кремневодороды от SiH 4 до Si 8 H 18 (по составу аналогичны предельным углеводородам). Кремний образует 2 группы кислородсодержащих силанов - силоксаны и силоксены. С азотом Кремний реагирует при температуре выше 1000 °С, Важное практическое значение имеет нитрид Si 3 N 4 , не окисляющийся на воздухе даже при 1200 °С, стойкий по отношению к кислотам (кроме азотной) и щелочам, а также к расплавленным металлам и шлакам, что делает его ценным материалом для химической промышленности, для производства огнеупоров и других. Высокой твердостью, а также термической и химической стойкостью отличаются соединения Кремния с углеродом (карбид кремния SiC) и с бором (SiB 3 , SiB 6 , SiB 12). При нагревании Кремний реагирует (в присутствии металлических катализаторов, например меди) с хлорорганическими соединениями (например, с СН 3 Сl) с образованием органогалосиланов [например, Si(СН 3) 3 Cl], служащих для синтеза многочисленных кремнийорганических соединений.

Кремний образует соединения почти со всеми металлами - силициды (не обнаружены соединения только с Bi, Tl, Pb, Hg). Получено более 250 силицидов, состав которых (MeSi, MeSi 2 , Me 5 Si 3 , Me 3 Si, Me 2 Si и других) обычно не отвечает классическим валентностям. Силициды отличаются тугоплавкостью и твердостью; наибольшее практическое значение имеют ферросилиций (восстановитель при выплавке специальных сплавов, см. Ферросплавы) и силицид молибдена MoSi 2 (нагреватели электропечей, лопатки газовых турбин и т. д.).

Получение Кремния. Кремний технической чистоты (95-98%) получают в электрической дуге восстановлением кремнезема SiO 2 между графитовыми электродами. В связи с развитием полупроводниковой техники разработаны методы получения чистого и особо чистого Кремния Это требует предварительного синтеза чистейших исходных соединений Кремния, из которых Кремний извлекают путем восстановления или термического разложения.

Чистый полупроводниковый Кремний получают в двух видах: поликристаллический (восстановлением SiCl 4 или SiHCl 3 цинком или водородом, термическим разложением SiI 4 и SiH 4) и монокристаллический (бестигельной зонной плавкой и "вытягиванием" монокристалла из расплавленного Кремния - метод Чохральского).

Применение Кремния. Специально легированный Кремний широко применяется как материал для изготовления полупроводниковых приборов (транзисторы, термисторы, силовые выпрямители тока, тиристоры; солнечные фотоэлементы, используемые в космических кораблях, и т. д.). Поскольку Кремний прозрачен для лучей с длиной волны от 1 до 9 мкм, его применяют в инфракрасной оптике,

Кремний имеет разнообразные и все расширяющиеся области применения. В металлургии Кремний используется для удаления растворенного в расплавленных металлах кислорода (раскисления). Кремний является составной частью большого числа сплавов железа и цветных металлов. Обычно Кремний придает сплавам повышенную устойчивость к коррозии, улучшает их литейные свойства и повышает механическую прочность; однако при большем его содержании Кремний может вызвать хрупкость. Наибольшее значение имеют железные, медные и алюминиевые сплавы, содержащие Кремний. Все большее количество Кремния идет на синтез кремнийорганических соединений и силицидов. Кремнезем и многие силикаты (глины, полевые шпаты, слюды, тальки и т. д.) перерабатываются стекольной, цементной, керамической, электротехнической и других отраслями промышленности.

Кремний в организме находится в виде различных соединений, участвующих главным образом в образовании твердых скелетных частей и тканей. Особенно много Кремния могут накапливать некоторые морские растения (например, диатомовые водоросли) и животные (например, кремнероговые губки, радиолярии), образующие при отмирании на дне океана мощные отложения оксида кремния (IV). В холодных морях и озерах преобладают биогенные илы, обогащенные Кремнием, в тропич. морях - известковые илы с низким содержанием Кремния. Среди наземных растений много Кремния накапливают злаки, осоки, пальмы, хвощи. У позвоночных животных содержание оксида кремния (IV) в зольных веществах 0,1-0,5%. В наибольших количествах Кремний обнаружен в плотной соединительной ткани, почках, поджелудочной железе. В суточном рационе человека содержится до 1 г Кремния. При высоком содержании в воздухе пыли оксида кремния (IV) она попадает в легкие человека и вызывает заболевание - силикоз..

Кремний в организме. Кремний в организме находится в виде различных соединений, участвующих главным образом в образовании твердых скелетных частей и тканей. Особенно много Кремния могут накапливать некоторые морские растения (например, диатомовые водоросли) и животные (например, кремнероговые губки, радиолярии), образующие при отмирании на дне океана мощные отложения оксида кремния (IV). В холодных морях и озерах преобладают биогенные илы, обогащенные Кремнием, в тропич. морях - известковые илы с низким содержанием Кремния. Среди наземных растений много Кремния накапливают злаки, осоки, пальмы, хвощи. У позвоночных животных содержание оксида кремния (IV) в зольных веществах 0,1-0,5%. В наибольших количествах Кремний обнаружен в плотной соединительной ткани, почках, поджелудочной железе. В суточном рационе человека содержится до 1 г Кремния. При высоком содержании в воздухе пыли оксида кремния (IV) она попадает в легкие человека и вызывает заболевание - силикоз.

Со всеми, как говорится, вытекающими отсюда последствиями. Очевидно, с этих точек зрения и стоит рассматривать кремний - достаточно обыкновенный и достаточно необыкновенный элемент .

Природные соединения кремния

«Показывают мне, - писал в одной из своих популярных книг академик А. Е. Ферсман, - самые разнообразные предметы: прозрачный шар, сверкающий на солнце чистотой холодной ключевой воды, красивый, пестрого рисунка агат , яркой игры многоцветный опал , чистый песок на берегу моря, тонкую, как шелковинка, нитку из плавленого кварца или жароупорную посуду из него, красиво ограненные груды горного хрусталя , таинственный рисунок фантастической яшмы , окаменелое дерево, превращенное в камень, грубо обработанный наконечник стрелы древнего человека... все это одно и то же химическое соединение элементов кремния и кислорода».

Как ни разнообразен этот перечень, он, конечно, не исчерпывает многообразия природных соединений кремния. Начнем, однако, с упомянутых. «Грубо обработанный наконечник стрелы древнего человека» был сработан из кремня. А что такое кремень? Современный человек видел эти наконечники, равно, как и кремневые ружья, разве только в историческом музее. «Кремни», вставляемые в зажигалки курильщиков, ни внешне, ни по составу нимало не похожи на те кремни. Впрочем, многие из нас в детстве высекали искры, ударяя камешком о камешек, и скорее всего, тогда в наших руках были настоящие кремни.

Так что такое кремень? Химик на этот вопрос ответит буквально по Ферсману: двуокись кремния, кремнезем. Возможно, при этом добавит, что кремнезем кремня - аморфный, в отличие от кристаллического кремнезема кварцевого песка и горного хрусталя, и что часть химиков считает кремень кристаллогидратом mSiO 2 -nH 2 O.

Геолог на тот же вопрос ответит иначе, но тоже в общем-то буднично: минеральное образование, распространенное и мало интересное, пласты и «желваки» кремня обычно залегают среди известняков и меловых отложений...

И лишь гуманитарий-историк отзовется, должен отозваться, о кремне восторженно, ибо именно кремень - невзрачный и не очень прочный камень - помог в свое время человеку стать Человеком. Каменный век - век кремневых орудий труда. Причиной тому не только и не столько распространенность и доступность кремня, сколько способность его при сколе образовывать острые режущие кромки.

Обратимся теперь к кристаллическим аналогам кремня: «красиво ограненные груды горного хрусталя», «чистый песок на берегу моря»... Разница между ними небольшая, по существу лишь в размерах и примесях. Чистый песок - чистая кристаллическая двуокись кремния. Чистой воды горный хрусталь - то же самое. И что еще очень важно, оба эти вещества - полимеры, неорганические полимеры.

Одним из первых предположение о полимерном строении двуокиси кремния высказал Дмитрий Иванович Менделеев. Именно этим обстоятельством объяснял он нелетучесть и тугоплавкость веществ состава SiO 2 или, правильнее, (SiO 2)n. Рентгеноструктурные исследования наших дней подтвердили правильность этой догадки. Установлено, что кристаллический кремнезем представляет собой трехмерный сетчатый полимер. Цепочка кремнекислородных тетраэдров очень прочна, связь кремния с кислородом намного прочнее, чем, например, связь между атомами углерода в цепях органических полимеров. Кремнекислородным цепям хватает и гибкости, но в мире минералов они образуют жесткие сплетения в виде пространственных решеток и сеток, которые хрупки, неподатливы при механической обработке. Чтобы кремнекислородные цепочки остались гибкими, эластичными, их нужно изолировать одну от другой, окружить другими атомами или группами атомов. Это сделали химики, синтезировавшие многочисленные ныне кремнийорганические полимеры, речь о которых ниже. Впрочем, и природа дала великолепный образец волокнистого по структуре полимерного соединения кислорода и кремния - это асбест.

Сегодня очень непросто ответить на детский вопрос, какая из разновидностей кристаллической двуокиси кремния - песок или горный хрусталь - важнее для современного человека. Если брать в расчет только природный горный хрусталь, запасы которого практически исчерпаны, то ответ однозначен: конечно, песок. Из кварцевого песка делают кварцевое стекло, а из него - превосходную лабораторную посуду, баллоны ламп специального назначения и многое другое. Горный же хрусталь - не только поделочный материал, он и пьезоэлектрик. Он нужен радиотехнике во все возрастающих количествах, и вряд ли возможно было бы быстрое развитие этой отрасли, если бы люди не научились выращивать крупнокристаллический искусственный кварц в виде монокристаллов.

В 30-х годах Александр Евгеньевич Ферсман писал: «Через несколько десятков лет геологи не будут больше с опасностью для жизни взбираться на вершины Альп, Урала или Кавказа в погоне за кристаллами, не будут добывать их в безводных пустынях Южной Бразилии или в наносах Мадагаскара. Я уверен, что мы будем по телефону заказывать нужные куски кварца на государственном кварцевом заводе». Кварцевые заводы появились даже раньше, чем предсказывал ученый. Они выпускают кристаллы кварца, ничем не уступающие природному горному хрусталю, в количествах, достаточных не только для радиоэлектронной промышленности, не только для оптики, но и для украшений. Сомневающимся в этом утверждении рекомендуем обратиться в ближайший от их дома ювелирный магазин.

Мы умышленно ограничили рассказ о природных соединениях кремния тремя веществами и одним, по существу, соединением. Обо всем в коротком очерке все равно не расскажешь, а соединения с кислородом - самые важные. Вернемся, однако, собственно к кремнию.

Несмотря на распространенность в природе, этот элемент открыли сравнительно поздно. В 1825 г. выдающийся шведский химик и минералог Йенс Якоб Берцелиус сумел в двух реакциях выделить не очень чистый аморфный кремний в виде коричневого порошка. Для этого он восстановил металлическим калием газообразное вещество, известное ныне как тетрафторид кремния SiF 4 , и кроме того, провел такую реакцию:

K 2 SiF 6 + 4K → 6KF + Si.

Новый элемент был назван силицием (от латинского silex - кремень). Русское название этого элемента появилось спустя девять лет, в 1834 г., и благополучно дожило, в отличие, скажем, от «буротвора», до наших дней.

Кремний, как и углерод, образует различные аллотропические модификации. Кристаллический кремний так же мало похож на аморфный, как алмаз на графит . Это твердое вещество серостального цвета с металлическим блеском и гранецентрированной кристаллической решеткой того же типа, что у алмаза. Впрочем, аморфный кремний, как выяснилось, тоже не аморфный, а мелкокристаллический.

Первый промышленный способ производства кремния, изобретенный во второй половине XIX в. известным русским химиком Н. Н. Бекетовым, основан на восстановлении четыреххлористого кремния SiCl 4 парообразным цинком . Технически чистый кремний (95-98% Si) сейчас получают главным образом восстановлением кремнезема в электрической дуге между графитовыми электродами. Используется до сих пор изобретенный еще в прошлом веке способ восстановления кремнезема коксом в электрических печах. Этот способ также дает технический кремний, нужный металлургии как раскислитель, связывающий и удаляющий из металла кислород, и как легирующая добавка, повышающая прочность и коррозионную стойкость сталей и многих сплавов на основе цветных металлов. Впрочем, здесь важно «не переборщить»: избыток кремния может привести к хрупкости.

Не отошел в прошлое и бекетовский способ получения кремния (в реакции между парами цинка и тетрахлоридом кремния - летучей бесцветной жидкостью с температурой кипения всего 57,6°С). Это один из способов получения высокочистого полупроводникового кремния.

Полагают, что при абсолютном нуле идеально чистый и идеально правильный монокристаллический кремний должен быть идеальным электроизолятором. Но идеальная чистота так же недостижима, как и абсолютный нуль. В нашем случае это, что называется, к добру. Не идеальный, а просто высокочистый и сверхчистый кремний стал важнейшим полупроводниковым материалом. При температуре, отличной от абсолютного нуля, в нем возникает собственная проводимость, причем носителями электрического тока являются не только свободные электроны, но и так называемые дырки - места, покинутые электронами.

Вводя в сверхчистый кремний те или иные легирующие добавки (в микроколичествах; обычно это делается с помощью ионно-лучевых установок), в нем создают проводимость того или иного типа. Добавки элементов третьей группы менделеевской таблицы ведут к созданию дырочной проводимости, а пятой - электронной. Что значат для нас сегодня полупроводники, объяснять, вероятно, излишне. Расскажем лучше вкратце о способах получения полупроводникового кремния.

Один из этих способов упомянут выше. Заметим только, что реакцию высокочистых паров цинка с очень чистым четыреххлористым кремнием проводят при температуре 950°С в трубчатом реакторе, изготовленном из плавленого кварца. Элементный кремний образуется в виде игольчатых кристаллов, которые потом измельчают и промывают соляной кислотой, разумеется, тоже весьма чистой. Затем следует еще одна ступень очистки - зонная плавка, и лишь после нее поликристаллическую кремниевую массу превращают в монокристаллы.

Есть и другие реакции, в которых получают высокочистый полупроводниковый кремний. Это восстановление водородом трихлорсилана SiHCl 3 или четыреххлористого кремния SiCl 4 и термическое разложение моносилана, гидрида кремния SiH 4 или тетраиодида SiJ 4 . В последнем случае разложение соединения происходит на разогретой до 1000°С танталовой ленте. Дополнительная очистка зонной плавкой следует после каждой из этих реакций. В полупроводниковом кремнии содержание примесей крайне мало - 10-5-10-6% и даже меньше.

Кремнийорганика

Первое органическое соединение, содержащее кремний, было получено еще в 1845 г. в реакции этилового спирта с четыреххлористым кремнием: SiCl 4 + 4C 2 H 5 OH → Si(OC 2 H 5) 4 + 4HCl. Но это не был первый синтез кремнийорганического соединения в том смысле, какой вкладывает в это понятие современная химическая номенклатура. Кремнийорганическими сейчас признают лишь те соединения, в которых есть связь углерод - кремний. Так что первое кремнийорганическое соединение - тетраэтилсилиций Si (C 2 H 5) 4 - было получено лишь в 1863 г.

Конечно, в то время никто не предполагал, что спустя 100 лет кремнийорганика разовьется в самостоятельную и важную ветвь химической науки, что кремнийорганические соединения, особенно полимерные, станут первостепенно важны для многих видов промышленности, для транспорта и строительства, даже для быта.

Опытная хозяйка перед стиркой смажет руки силиконовым кремом, который предохранит их не только от воды, но и от разъедающего действия соды или стирального порошка. Сдавая в чистку платье или костюм, мы охотно доплачиваем за несминаемую складку и за «пропитку», благодаря которой платье будет меньше грязниться. И в том и в другом случае нашу одежду на фабрике химической чистки обработают кремнийорганическими жидкостями...

Этот же раздел химической науки подарил нам самые теплостойкие и в то же время самые морозостойкие синтетические каучуки. Температурный интервал работоспособности кремнийорганических каучуков от - 80 до +260°С, и эти каучуки уже давно существуют не в виде экзотических лабораторных образцов, а в виде массовой промышленной продукции.

Для современной электротехники очень важны кремнийорганические лаки, представляющие собой растворы кремнийорганических полимеров. Они обладают отличными электроизоляционными свойствами, устойчивы к атмосферным воздействиям, перепадам температур, солнечной радиации. Вот лишь один пример эффективности подобных материалов в технике. До внедрения кремнийорганических лаков изоляция электродвигателя врубовой машины в условиях шахты служила в среднем 5 месяцев. Когда в качестве изоляции стали применять кремнийорганический лак, срок службы двигателя до первого ремонта вырос до 3 лет.

Подобных примеров можно привести десятки, и число их будет множиться с каждым годом: появляются новые вещества, в состав которых наряду с кремнием и традиционными элементами органического мира входят алюминий , титан и другие металлы. Каждый привносит в молекулу что-то свое, и на каком-то этапе количество переходит в качество.

Кремний в микроорганизмах

Многие известные ученые работали и продолжают работать в этой области химии. Советскую школу кремнийоргаников основал академик К. А. Андрианов, который еще в 1937 г. получил первые в мире кремнийорганические полимеры - полиорганосилоксаны.

В обзорной статье о кремнии, написанной еще лет десять назад, такой раздел был бы необязателен. Слишком мало знала наука о роли кремния в жизни высших животных и человека. Известно было, что кремний (его двуокись) составляет основу скелетов у некоторых морских организмов - радиолярий , диатомей , некоторых губок, морских звезд . Известно также, что он нужен растениям : от злаков и осоки до пальм и бамбука. Чем жестче стебель растения, тем больше в его золе находят кремния. Растения, как и морские животные, берут кремний из воды. И в пресной, и в соленой воде растворено около 3 мг/л кремния (в виде кремниевых кислот и их солей). Роль же кремния в жизни высших животных и человека долгое время оставалась неясной. Было широко распространено мнение о биологической инертности и бесполезности соединений кремния.

Но, с другой стороны, давно известно серьезное заболевание - силикоз, вызываемое длительным вдыханием пыли, содержащей свободную двуокись кремния. Некоторые кремнийорганические соединения - арилсилатроны оказались токсичными для всех теплокровных животных. И в то же время известно, что в человеческом организме кремний есть практически повсеместно, больше всего - в костях, коже, соединительной ткани, а также в некоторых железах. При переломах костей содержание кремния в месте перелома возрастает почти в 50 раз. Минеральные воды с высоким содержанием кремния (например, известная кавказская вода «Джермук») оказывают благотворное влияние на здоровье людей, особенно пожилых.

Нельзя сказать, что роль кремния в жизни выяснена уже окончательно - скорее, наоборот: появление новой информации все больше осложняет картину. Синтезом и исследованием биологически активных соединений кремния сейчас заняты во многих лабораториях мира. Очень активно работают над комплексом проблем, который кратко можно назвать так же, как названа эта глава, т. е. кремний и жизнь, сотрудники Иркутского института органической химии во главе с членом-корреспондентом Академии наук СССР М. Г. Воронковым. В одной из своих статей он писал: «Уже имеющиеся многочисленные наблюдения позволяют прийти к заключению о необходимости широких и тщательных исследований (в том числе на молекулярном уровне) роли кремния в живых организмах и изыскания возможностей использовать соединения этого элемента для лечения и профилактики различных заболеваний и травм, а также для борьбы со старением». Пояснения здесь, наверное, требует лишь последний тезис. Дело в том, что установлены возрастные особенности кремниевого обмена в организме: с возрастом содержание этого элемента в костной ткани, артериях, коже существенно уменьшается...

Этот раздел наших знаний об элементе № 14 еще не стал сводом общепринятых, устоявшихся истин. Но, очевидно, именно здесь проходит в наши дни передний край борьбы за познание кремния - ближайшего аналога углерода, жизненно важного элемента.

Углерод способен образовывать несколько аллотропных модификаций. Это алмаз (наиболее инертная аллотропная модификация), графит, фуллерен и карбин.

Древесный уголь и сажа представляют собой аморфный углерод. Углерод в таком состоянии не имеет упорядоченной структуры и фактически состоит из мельчайших фрагментов слоев графита. Аморфный углерод, обработанный горячим водяным паром, называют активированным углем. 1 грамм активированного угля из-за наличия в нем множества пор имеет общую поверхность более трехсот квадратных метров! Благодаря своей способности поглощать различные вещества активированный уголь находит широкое применение как наполнитель фильтров, а также как энтеросорбент при различных видах отравлений.

С химической точки зрения аморфный углерод является наиболее активной его формой, графит проявляет среднюю активность, а алмаз является крайне инертным веществом. По этой причине, рассматриваемые ниже химические свойства углерода следует прежде всего относить к аморфному углероду.

Восстановительные свойства углерода

Как восстановитель углерод реагирует с такими неметаллами как, например, кислород, галогены, сера.

В зависимости от избытка или недостатка кислорода при горении угля возможно образование угарного газа CO или углекислого газа CO 2:

При взаимодействии углерода со фтором образуется тетрафторид углерода:

При нагревании углерода с серой образуется сероуглерод CS 2:

Углерод способен восстанавливать металлы после алюминия в ряду активности из их оксидов. Например:

Также углерод реагирует и с оксидами активных металлов, однако в этом случае наблюдается, как правило, не восстановление металла, а образование его карбида:

Взаимодействие углерода с оксидами неметаллов

Углерод вступает в реакцию сопропорционирования с углекислым газом CO 2:

Одним из наиболее важных с промышленной точки зрения процессов является так называемая паровая конверсия угля . Процесс проводят, пропуская водяной пар через раскаленный уголь. При этом протекает следующая реакция:

При высокой температуре углерод способен восстанавливать даже такое инертное соединение как диоксид кремния. При этом в зависимости от условия возможно образование кремния или карбида кремния (карборунда ):

Также углерод как восстановитель реагирует с кислотами окислителями, в частности, концентрированными серной и азотной кислотами:

Окислительные свойства углерода

Химический элемент углерод не отличается высокой электроотрицательностью, поэтому образуемые им простые вещества редко проявляют окислительные свойства по отношению к другим неметаллам.

Примером таких реакций является взаимодействие аморфного углерода с водородом при нагревании в присутствии катализатора:

а также с кремнием при температуре 1200-1300 о С:

Окислительные свойства углерод проявляет по отношению к металлам. Углерод способен реагировать с активными металлами и некоторыми металлами средней активности. Реакции протекают при нагревании:

Карбиды активных металлов гидролизуются водой:

а также растворами кислот-неокислителей:

При этом образуются углеводороды, содержащие углерод в той же степени окисления, что и в исходном карбиде.

Химические свойства кремния

Кремний может существовать, как и углерод в кристаллическом и аморфном состоянии и, также, как и в случае углерода, аморфный кремний существенно более химически активен, чем кристаллический.

Иногда аморфный и кристаллический кремний, называют его аллотропными модификациями, что, строго говоря, не совсем верно. Аморфный кремний представляет собой по сути конгломерат беспорядочно расположенных друг относительно друга мельчайших частиц кристаллического кремния.

Взаимодействие кремния с простыми веществами

неметаллами

При обычных условиях кремний ввиду своей инертности реагирует только со фтором:

С хлором, бромом и йодом кремний реагирует только при нагревании. При этом характерно, что в зависимости от активности галогена, требуется и соответственно различная температура:

Так с хлором реакция протекает при 340-420 о С:

С бромом – 620-700 о С:

С йодом – 750-810 о С:

Все галогениды кремния легко гидролизуются водой:

а также растворами щелочей:

Реакция кремния с кислородом протекает, однако требует очень сильного нагревания (1200-1300 о С) ввиду того, что прочная оксидная пленка затрудняет взаимодействие:

При температуре 1200-1500 о С кремний медленно взаимодействует с углеродом в виде графита с образованием карборунда SiC – вещества с атомной кристаллической решеткой подобной алмазу и почти не уступающего ему в прочности:

С водородом кремний не реагирует.

металлами

Ввиду своей низкой электроотрицательности кремний может проявлять окислительные свойства лишь по отношению к металлам. Из металлов кремний реагирует с активными (щелочными и щелочноземельными), а также многими металлами средней активности. В результате такого взаимодействия образуются силициды:

Силициды активных металлов легко гидролизуются водой или разбавленными растворами кислот-неокислителей:

При этом образуется газ силан SiH 4 – аналог метана CH 4 .

Взаимодействие кремния со сложными веществами

С водой кремний не реагирует даже при кипячении, однако аморфный кремний взаимодействует с перегретым водяным паром при температуре около 400-500 о С. При этом образуется водород и диоксид кремния:

Из всех кислот кремний (в аморфном состоянии) реагирует только с концентрированной плавиковой кислотой:

Кремний растворяется в концентрированных растворах щелочей. Реакция сопровождается выделением водорода.

Кремний – химический элемент IV группы периодической системы Менделеева, атомный номер 14, масса атома 28,0855. Какими же свойствами обладает кремний, и каковы его характеристики?

Общая химическая характеристика кремния

Кремний – это элемент третьего периода IVА группы, р-элемент. В атоме кремния есть пять незанятых d-орбиталей. С их участием кремний образует соединения, в которых его координационное число равно 6. Для кремния характерно образование цепей, в которых чередуются атомы кремния и кислорода, соединенные прочными связями.

Рис. 1. Кремний.

Кремний в природе встречается в связанном виде: земная кора более чем наполовину состоит из кремнезема SiO 2 , силикатных алюмосиликатных пород типа каолинита Al 2 O 3 *2SiO 2 *2H 2 O, главных составных частей песка и глины.

Название этот элемент получил от минерала с латинским названием silisium (silex – означает кремень). Русское название «кремний» введено в 1834 году. академиком Г. И. Гессом.

Физические свойства

Известен аморфный и кристаллический кремний. Характер кристаллического кремния состоит в том, что это темно-серое с металлическим блеском, тугоплавкое, хрупкое кристаллическое вещество, обладающее незначительной проводимостью.

Расположение атомов Si такое же, как атомов С в алмазе. Каждый атом кремния находится в центре тетраэдра и связан ковалентно с четырьмя другими атомами кремния. Аморфный кремний – бурый порошок, который является более реакционноспособным.

У кремния в природе встречаются три стабильных изотопа

Рис. 2. Изотопы кремния.

Химические свойства

Так как у атома кремния на внешнем энергетическом уровне имеется четыре электрона, то характерными степенями окисления его являются +4 и -4.

Соединения, содержащие кремний со степенью окисления +2, встречаются редко.

В соединениях кремний проявляет валентность IV, вступая при нагревании во взаимодействие с простыми веществами (фтором, хлором, кислородом, углеродом).

При обычных условиях из простых веществ кремний реагирует лишь с фтором:

Si+2F 2 =SiF 4 (тетрафторид кремния)

Рис. 3. Тетрафторид кремния.

С кислородом и фтором реакции протекают при +400-+600 градусах:

Si+O 2 =SiO 2

Si+2Cl=SiCl 4 (тетрахлорид кремния)

С кислотами кремний не реагирует. Только аморфный кремний, измельченный в порошок, реагирует с фтороводородной кислотой.

Кремний взаимодействует с горячими растворами щелочей, образуя силикаты и водород:

Si+2NaOH+H 2 O=Na 2 SiO 3 +2H 2

Со многими металлами кремний химически взаимодействует, образуя силициды:

2Ca+Si=Ca 2 Si (силицид кальция)

2Mg+Si=Mg 2 Si (силицид магния)

При действии соляной кислоты на силицид магния Mg 2 Si образуется силан SiH 4:

Mg 2 Si+4HCl=SiH 4 +2MgCl 2

Силан – бесцветный ядовитый газ, аналог метана, самовоспламеняющийся на воздухе и сгорающий с образованием оксида кремния и воды:

SiH 4 +2O 2 =SiO 2 +2H 2 O

Что мы узнали?

В статье описываются физические и химические характеристики элемента кремния. Валентность кремния почти всегда IV , и лишь в некоторых соединениях проявляется валентность II. Кремний при нагревании температуры способен реагировать с металлами, неметаллами и щелочами.

Тест по теме

Оценка доклада

Средняя оценка: 4.1 . Всего получено оценок: 62.