Скорость химических реакций. Тиосерная кислота и тиосульфаты. Получение в лаборатории и свойства. Практическое применение тиосульфата натрия. Биологическая роль серы и ее круговорот в природе Аналитические реакции на катион натрия

Наблюдаемый признак реакции - образование бело-желтой мути (нерастворимая сера). Тиосерная кислота неустойчива (см. уравнение реакции!), поэтому ее получают взаимодействием тиосульфата натрия с разбавленной серной кислотой:

Na 2 S 2 O 3 + H 2 SO 4 = H 2 S 2 O 3 + Na 2 SO 4

т.е. суммарная реакция:

Na 2 S 2 O 3 + H 2 SO 4 = S + SO 2 + H 2 O + Na 2 SO 4

Проведение реакции: В 2 одинаковых стакана налить по 20 мл 2М серной кислоты. В 1 из стаканов добавить 80 мл воды (уменьшаем концентрацию кислоты). Одновременно прилить в оба стакана (из 2 других стаканов или цилиндров) 20 мл 2М тиосульфата натрия.

Что наблюдать: В каком из стаканов муть образуется быстрее?


  • Катализ

    В основе эксперимента - реакция разложения пероксида водорода

    H 2 O 2 = H 2 O + 1/2O 2

    ускоряющаяся в присутствии диоксида марганца, а также некоторых солей тяжелых металлов, фермента каталазы и др. Наблюдаемый признак реакции - выделение пузырьков газа, в котором ярко вспыхивает тлеющая лучина.

    Проведение реакции: В высокий цилиндр (на 100 мл) налить 10 мл 30% Н 2 О 2 . Быстро всыпать порошок MnO 2 (вариант - капнуть несколько капель крови). Внести в цилиндр тлеющую лучину.


  • Катализ

    В основе эксперимента - каталитическое окисление аммиака на оксиде хрома.

    4NH 3 + 5O 2 = 4NO + 6H 2 O

    Наблюдаемый признак реакции - искры (раскаливание частиц оксида хрома за счет экзотермического теплового эффекта реакции и их свечение).

    Проведение реакции: Большую плоскодонную колбу (500 мл) тщательно ополоснуть изнутри концентрированным раствором аммиака (таким образом в ней создается высокая концентрация паров аммиака). Сбрасывать в нее нагретый в железной ложечке оксид хрома (III).

    Простой модельный эксперимент, сразу на несколько тем.

    В сухой химический стакан (можно использовать простые одноразовые пишевые стаканчики) поместите одинаковые количества (примерно с горошину каждого) сухих лимонной кислоты и пищевой соды (гидрокарбоната натрия).

    Реакция не идет без воды, и при добавлении нескольких капель воды смесь "вскипает".

    NaHCO 3 + H 3 (C 5 H 5 O 7) = Na 3 (C 5 H 5 O 7) + CO 2 + H 2 O

    Можно провести такую же реакцию, заменив соду на мел. Это доказывает, что реакция сводится к взаимодействию карбонат-иона с протоном:

    CO 3 2- + 2H + = H 2 CO 3 = CO 2 + H 2 O

    Затем в одном стакане мы готовим насыщенный раствор соды (ее растворимость 9,6 г на 100 г воды при комнатной температуре). В два других стакана мы помещаем лимонную кислоту - в первый объемом со спичечную головку, во второй примерно в 5 раз больше. Наливаем в оба стакана по 10 мл воды и растворяем кислоту при перемешивании. В оба стакана с лимонной кислотой одновременно добавляем по 5 мл насыщенного раствора гидрокарбоната натрия. Видно, что в стакане, где концентрация лимонной кислоты выше, выделение газа более интенсивное. Вывод: скорость реакции пропорциональна концентрации реагентов.

    К эфирам серной кислоты относятся диалкилсульфаты (RO 2)SO 2 . Это высококипящие жидкости; низшие растворимы в воде; в присутствии щелочей образуют спирт и соли серной кис­лоты. Низшие диалкилсульфаты - алкилирующие агенты.

    Диэтилсульфат (C 2 H 5) 2 SO 4 . Температура плавления -26°С, температура кипения 210°С, растворим в спиртах, нерастворим в воде. Получен взаимодействием серной кислоты с этанолом. Яв­ляется этилирующим агентом в органическом синтезе. Проника­ет через кожу.

    Диметилсульфат (CH 3) 2 SO 4 . Температура плавления -26,8°С, температура кипения 188,5°С. Растворим в спиртах, плохо - в воде. Реагирует с аммиаком в отсутствие раствори­теля (со взрывом); сульфирует некоторые ароматические со­единения, например эфиры фенолов. Получают взаимодейст­вием 60%-ного олеума с метанолом при 150°С, Является метилирующим агентом в органическом синтезе. Канцероген, поражает глаза, кожу, органы дыхания.

    Тиосульфат натрия Na 2 S 2 O 3

    Соль тиосерной кислоты, в которой два атома серы имеют различные степени окисления: +6 и -2. Кристаллическое вещест­во, хорошо растворимо в воде. Выпускается в виде кристаллогид­рата Na 2 S 2 O 3 5Н 2 O, в обиходе называемый гипосульфитом. По­лучают взаимодействием сульфита натрия с серой при кипячении:

    Na 2 SO 3 +S=Na 2 S 2 O 3

    Как и тиосерная кислота, является сильным восстановителем, Легко окисляется хлором до серной кислоты:

    Na 2 S 2 O 3 +4Сl 2 +5Н 2 О=2H 2 SO 4 +2NaCl+6НСl

    На этой реакции было основано применение тиосульфата натрия для поглощения хлора (в первых противогазах).

    Несколько иначе происходит окисление тиосульфата натрия слабыми окислителями. При этом образуются соли тетратионовой кислоты, например:

    2Na 2 S 2 O 3 +I 2 =Na 2 S 4 O 6 +2NaI

    Тиосульфат натрия является побочным продуктом в произ­водстве NaHSO 3 , сернистых красителей, при очистке промыш­ленных газов от серы. Применяется для удаления следов хлора после отбеливания тканей, Для извлечения серебра из руд; явля­ется фиксажем в фотографии, реактивом в иодометрии, противоядием при отравлении соединениями мышьяка, ртути, противо­воспалительным средством.

    2.1. Цель работы: определить влияние различных факторов на скорость химической реак­ции, ознакомиться с методами определения средней константы скорости, порядка реакции, энергии активации.

    2.2. Объекты и средства исследования: 0.1М растворы тиосульфата натрия и серной кислоты, дистиллированная вода, пробирки, две бюретки, пипетка на 2мл, термостат, секундомер.

    2.3. Программа работы

    2.3.1. Влияние концентрации на скорость реакции .

    В результате реакции между серной кислотой и тиосульфатом натрия образуется сера, выделяющаяся в виде мути. Время от начала реакции до момента помутнения (голубоватой опалесценции) зависит от скорости реакции. Это дает возможность судить о средней скорости реакции.

    Реакция идет в три стадии:

    1) Na 2 S 2 O 3 + H 2 SO 4 = Na 2 SO 4 + Н 2 S 2 O 3

    2) Н 2 S 2 O 3 = H 2 SO 3 + S¯

    3) H 2 SO 3 = H 2 O + SO 2 ­

    Суммарное уравнение:

    Na 2 S 2 O 3 + H 2 SO 4 = Na 2 SO 4 + SO 2 ­ + S¯ + H 2 O

    Самая медленная, скоростьопределяющая, стадия – вторая, следовательно, скорость всего процесса зависит только от концентрации тиосерной кислоты. Так как тиосерная кислота получается в результате реакции ионного обмена, которая идет практически мгновенно, можно считать, что концентрация тиосерной кислоты равна концентрации тиосульфата натрия и скорость всего процесса зависит от концентрации тиосульфата натрия.

    Ход работы .

    Приготовить четыре раствора тиосульфата натрия разной концентрации согласно таблице 3. Поочередно к каждому раствору прибавить по 2мл 0,1М раствора серной кислоты и измерить время от момента приливания кислоты до момента появления помутнения. Результаты занести в таблицу 3, учитывая что ΔС есть величина постоянная, равная 4×10 -3 моль/л.

    Таблица 3

    На основании полученных данных построить график lgV = f (lgC) для определения порядка реакции при температуре T 1 (К). Графики строятся вручную на миллиметровой бумаге в соответствующем масштабе или в программе Microsoft Excel 2007.

    Для построения графиков в программе Microsoft Excel 2007 необходимо занести исходные данные в электронную таблицу.

    Затем необходимо выделить диапазон ячеек A2:B5 с данными и выбрать в меню Вставка – Диаграммы – Точечная и, выделив на графике полученные точки, выбрать в контекстном меню Добавить линию тренда – Линейная – Показывать уравнение на диаграмме x ) и есть n – порядок реакции. Например, n = 0,9919 ≈ 1

    Для определения константы скорости реакции k 1 при комнатной температуре следует построить график зависимости V = f(C) также вручную или с помощью программы Microsoft Excel 2007.

    Для построения графиков в программе Microsoft Excel 2007 занести исходные данные в электронную таблицу. Обратите внимание, что для столбца скорость (V ) необходимо выбрать формат ячеек экспоненциальный . В результате получаем график прямолинейной зависимости, в уравнении которой множитель при независимой переменной (x ) является константой скорости реакции.

    Например, k = 1,6· 10 -3

    2.3.2. Влияние температуры на скорость реакции.

    Опыт проводить аналогично предыдущему. Однако растворы тиосульфата натрия и серной кислоты перед смешением предварительно нагреть в термостате в течение 5 минут.

    Результаты записать в таблицу 3 (T 2).

    По результатам расчетов и измерений построить график V = f(C) и опре­делить константу скорости реакции k 2 при повышенной температуре (Т 2), также используя возможности программы Microsoft Excel 2007. Найти температурный коэффициент скорости реакции:

    На основании данных опытов 3.1.1. и 3.1.2. рассчитать энергию ак­тивации реакции Е акт. по формуле:

    где R = 8,31 Дж/(моль·К) –универсальная газовая постоянная;

    Т 1 и Т 2 -температура, К;

    k 1 и k 2 - константы скорости реакции при температурах Т 1 и Т 2 , соответственно, с -1 .

    Конец работы -

    Эта тема принадлежит разделу:

    Неорганическая химия

    Министерство образования и науки РФ.. Федеральное государственное бюджетное.. Учреждение высшего профессионального образования..

    Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

    Что будем делать с полученным материалом:

    Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

    Все темы данного раздела:

    Химическая посуда
    1.1. Цель работы: Изучить виды и назначение химической посуды. 1.2. Теоретические сведения Используемую в лабораториях химическую посуду можно разделить на несколь

    Мерная химическая посуда и приемы работы с ней
    Мерную посуду используют для измерения объемов жидкостей. К ней относятся: мерные колбы, цилиндры, пипетки и бюретки (рис.3). На правила работы с мерной посудой надо обратить

    Весы и правила взвешивания
    1.1. Цель работы: Познакомиться с приборами для взвешивания. Научиться взвешивать на лабораторных технических весах. 1.2. Теоретические сведения. Для определения м

    Запрещается превышать максимальную грузоподъемность весов
    Перед взвешиванием проверяют готовность весов к работе: 1. устанавливают их по уровню, 2. выверяют нулевое положение стрелки. Взвешиваемый предмет помещают на левую чашку

    Очистка природной воды
    3.1. Цель работы: познакомиться с методами очистки природной воды. 3.2. Объекты и средства исследования: два химических стакана на 300-500 мл, коническая воронка, колба Вюр

    Очистка дихромата калия перекристаллизацией
    4.1. Цель работы: освоить методику очистки веществ перекристаллизацией. 4.2. Объекты и средства исследования: коническая воронка, химические стаканы на 100 мл, мерный цилин

    Очистка йода возгонкой
    5.1. Цель работы: освоить методику очистки твердых веществ возгонкой. 5.2. Объекты и средства исследования: химический стакан без носика на 200-300 мл, круглодонная колба н

    Определение плотности жидкостей, температуры плавления и температуры кипения веществ
    6.1. Цель работы: ознакомиться с физическими характеристиками веществ и методами их определения. 6.2. Объекты и средства исследования: жидкие индивидуальные вещества (гексан, гептан, октан

    Получение оксида свинца и металлического свинца из его соли
    9.1. Цель работы: ознакомление с методами осаждения, фильтрования, высушивания и прокаливания осадков, а также с восстановлением металлов и их оксидов. 9.2. Объекты и средс

    Определение молярной массы легко испаряющихся веществ
    1.1. Цель работы: освоить методы определения молярных масс легко испаряющихся веществ и расчеты по уравнению Менделеева-Клапейрона. 1.2. Объекты и средства исследования: со

    Определение молярной массы углекислого газа
    2.1. Цель работы: освоить методы определения молярных масс газообразных веществ, используя уравнение Менделеева-Клапейрона и относительные плотности газов. 2.2. Объекты и средства ис

    Определение молярной массы эквивалентов металлов
    3.1. Цель работы: ознакомиться с методом определения молярной массы эквивалентов металлов в реакции взаимодействия металлов с разбавленными кислотами.

    Свойства гидроксидов
    1.1. Цель работы: изучить реакции получения и свойства гидроксидов 1.2. Объекты и средства исследования: 0,5М растворы сульфата меди(II), сульфата алюминия, хлорида хрома(I

    Получение и изучение свойств аммино- , гидроксо- , ацидо- и аквакомплексов
    1.1. Цель работы: познакомиться с методами получения, химическими свойствами и устойчивостью комплексных соединений. 1.2. Объекты и средства исследования: 0,5М растворы иод

    Измерение тепловых эффектов химических реакций
    1.1. Цель работы: выполнение калориметрических измерений и термодинамических расчетов, связанных с энергетикой химических реакций. 1.2. Объекты и средства исследования: кал

    Влияние изменения концентрации реагирующих веществ на хими­ческое равновесие
    3.1. Цель работы: установить, как влияет изменение концентрации реагирующих веществ на химическое равновесие. 3.2. Объекты и средства исследования: 0,1М раствор хлорида железа (III), насыщ

    Способы выражения концентрации растворов
    Способ выражения концентрации Формула Название и определение Обозначения и единица измерения

    Явления, наблюдаемые при растворении
    1.1. Цель работы: изучить явления, происходящие при растворении твердых, жидких и газообразных веществ в воде, объяснить наблюдаемые явления с точки зрения гидратной теории растворо

    Определение растворимости веществ в воде
    2.1. Цель работы: изучить свойства насыщенных и пересыщенных растворов, научиться определять растворимость веществ, изучить зависимость растворимости различных веществ от температур

    Образование и растворение осадков
    3.1. Цель работы: изучить условия образования и растворения осадков. 3.2. Объекты и средства исследования: 1н растворы нитрата свинца (II), хлорида натрия, хлорида магния, хлорида бария, б

    Приготовление и титрование растворов
    4.1. Цель работы: ознакомиться с методами приготовления растворов и определения их концентрации, выраженной в различных единицах. Освоить метод титрования растворов. Определить врем

    Определение жесткости водопроводной воды
    5.1. Цель работы: изучить метод объемного анализа растворов (титрование) при определении временной жесткости водопроводной воды. Научиться производить расчеты по концентрации электр

    Определение электропроводности раствора и константы диссоциации слабого электролита
    6.1. Цель и задачи работы: изучить кондуктометрический метод анализа. Установить зависимость удельной и эквивалентной электропроводности от концентрации раствора. Изучить закон разбавления Оствальд

    Гидролиз солей
    7.1. Цель и задачи работы: изучение процессов гидролиза солей различного типа. Установление влияния температуры, разбавления, реакции среды, заряда иона-комплексообразователя на сте

    атрия тиосульфат Natrii thiosulfas

    Na 2 S 2 0 3 -5H 2 0 M. м. 248,17

    Натрия тиосульфат не является природным продуктом, его получают синтетически.

    В промышленности натрия тиосульфат получают из отходов газового производства. Этот метод несмотря на многостадий-ность экономически выгоден, так как сырьем являются отходы газового производства и, в частности, светильный газ, образу-ющийся при коксовании угля.

    Светильный газ всегда содержит примесь сероводорода, ко-торый улавливается поглотителями, например гидроксидом кальция. При этом получается сульфид кальция.


    Но сульфид кальция в процессе получения подвергается гидролизу, поэтому реакция идет несколько иначе -с обра-зованием гидросульфида кальция.


    Гидросульфид кальция при окислении кислородом воздуха образует тиосульфат кальция.


    При сплавлении полученного тиосульфата кальция с сульфа-том натрия или карбонатом натрия получается тиосульфат нат-рия Na 2 S 2 0 3 .


    После упаривания раствора выкристаллизовывается тио-сульфат натрия, который и является фармакопейным препара-том.

    По внешнему виду тиосульфат натрия (II) представляет со-бой бесцветные прозрачные кристаллы солоновато-горького вкуса. Очень легко растворим в воде. При температуре 50 °С плавится в своей кристаллизационной воде. По структуре яв-ляется солью тиосерной кислоты (I).


    Как видно из формулы этих соединений, степень окисления атомов серы в их молекулах различна. Один атом серы имеет степень окисления +6, другой -2. Присутствие атомов серы в различных степенях окисления обусловливает их свойства.

    Так, имея в молекуле S 2- , натрия тиосульфат проявляет вос-становительную способность.

    Как и сама тиосерная кислота, соли ее не являются проч-ными соединениями и легко разлагаются под влиянием кислот и даже таких слабых, как угольная.


    Это свойство натрия тиосульфата разлагаться кислотами с выделением серы используется для идентификации препарата. При добавлении к раствору натрия тиосульфата хлороводород-ной кислоты наблюдается помутнение раствора вследствие вы-деления серы.


    Весьма характерной для натрия тиосульфата является реак-ция его с раствором нитрата серебра. При этом выделяется осадок белого цвета (тиосульфат серебра), который быстро желтеет. При стоянии под влиянием влаги воздуха осадок чер-неет вследствие выделения сульфида серебра.


    Если при действии на натрия тиосульфат нитратом серебра сразу образуется черный осадок, это указывает на загрязнение препарата сульфидами, которые при взаимодействии с нитра-том серебра сразу выделяют осадок сульфида серебра.


    Чистый препарат при действии раствора нитрата серебра темнеет не сразу.

    В качестве реакции подлинности может быть использована также реакция взаимодействия натрия тиосульфата с раство-ром хлорида железа (III). При этом образуется тиосульфат окисного железа, окрашенный в фиолетовый цвет. Окраска бы-стро исчезает вследствие восстановления этой соли до бесцвет-ных солей закисного железа (FeS 2 0 3 и FeS 4 0 6).


    При взаимодействии с йодом натрия тиосульфат действует как восстановитель. Принимая электроны от S 2- , йод восста-навливается до I - , а натрия тиосульфат окисляется йодом до тетратиоиата натрия.


    Аналогично восстанавливается хлор в хлороводород.


    При избытке хлора выделяющаяся сера окисляется до сер-ной кислоты.


    На этой реакции было основано применение натрия тиосуль-фата для поглощения хлора в первых противогазах.

    В препарате не допускается наличие примесей мышьяка, се-лена, карбонатов, сульфатов, сульфидов, сульфитов, солей каль-ция.

    ГФ X допускает наличие примесей хлоридов, солей тяжелых металлов в пределах эталона.

    Количественное определение натрия тиосульфата проводят йодометрическим методом, в основу которого положена реак-ция его взаимодействия с йодом. ГФ требует содержания тио-сульфата натрия в препарате не менее 99% и не более 102% (за счет допустимого предела выветривания препарата).

    Применение натрия тиосульфата основано на его свойстве выделять серу. Препарат применяется в качестве противоядия при отравлениях галогенами, цианом и циановодородной кис-лотой.


    Образующийся роданид калия гораздо менее ядовит, чем цианид калия. Поэтому при отравлении циановодородной кис-лотой или ее солями в качестве первой помощи следует при-менить натрия тиосульфат. Препарат может применяться также при отравлении соединениями мышьяка, ртути, свинца; при этом образуются неядовитые сульфиды.

    Натрия тиосульфат применяется также при аллергических заболеваниях, артритах, невралгии - внутривенно в виде 30% водного раствора. В связи с этим ГФ X приводит 30% раствор натрия тиосульфата для инъекций (Solutio Natrii thiosulfatis 30% pro injectionibus).

    Выпускается в порошках и в ампулах по 5, 10, 50 мл 30% раствора.

    Натрия тиосульфат содержит кристаллизационную воду, ко-торая легко выветривается, поэтому хранить ее следует в про-хладном месте, в хорошо закупоренных склянках из темного стекла, так как свет способствует его разложению. Растворы при стоянии мутнеют от выделяющейся серы. Этот процесс ускоряется в присутствии диоксида углерода. Поэтому склянки или бутыли с растворами натрия тиосульфата снабжаются хлоркальциевой трубкой, наполненной натронной известью, ко-торая ее поглощает.

    Задача 866.
    Написать уравнение реакции получения тиосульфата натрия. Какова степень окисленности серы в этом соединении? Окислительные или восстановительные свойства проявляет тиосульфат-ион? Привести примеры реакций.
    Решение:
    Уравнения реакций получения тиосульфата натрия:
    а) Водный раствор сульфита натрия кипятят в присутствии серы, а затем охлаждают, выделяется кристаллогидрат тиосульфата натрия :

    Na 2 SO 3 + S + 5H 2 O ↔ Na 2 S 2 O 3 . 5H 2 O.

    Водный раствор сульфита натрия кипятят в присутствии серы, а затем охлаждают, выделяется кристаллогидрат тиосульфата натрия.

    б) Окисление полисульфидов кислородом воздуха:

    2Na 2 S 5 + 3O 2 ↔ 2Na 2 S 2 O 3 +6S.

    в) Получение тиосульфата натрия путём взаимодействия серы со щёлочью. Реакция протекает с одновременным окислением и восстановлением серы:

    4S + 6NaOH ↔ Na 2 S 2 O 3 + 2Na 2 S +3H 2 O.

    г) Непосредственное взаимодействие сернистого ангидрида с сероводородом в щелочной среде. Для этого смесь обеих газов пропускают при сильном размешивании в раствор едкого натра до его нейтрализации, то образуется тиосульфат натрия:

    4SO 2 + 2H 2 S + 6NaOH ↔ 3Na 2 S 2 O 3 + 5H 2

    Атомы серы, входящие в состав тиосульфатов имеют различную степень окисленности; у одного атома степень окисленности равна +4, у другого 0.Тиосульфат-ион S 2 O 3 2- проявляет свойства восстановителя. Хлор, бром и другие сильные окислители окисляют его до сульфат-иона SO 4 2- , например:
    Взаимодействие тиосульфата натрия с хлором (при его избытке):

    Na 2 S 2 O 3 + 4Cl 2 + 5H 2 O ↔ 2H 2 SO 4 + 2NaCl + 6HCl

    Ионно-молекулярное уравнение:

    S2O 3 2- + 4Cl 2 0 + 5H 2 O ↔ 2SO 4 2- + 8Cl - + 10H +

    Молекулярная форма:

    Na 2 S 2 O 3 + 4Cl 2 + 5H 2 O ↔ 2H 2 SO 4 + 2NaCl + 6HCl l

    В данной реакции тиосульфат натрия выступает в роли восстановителя, увеличивая степень окисления одного атома серы от 0 до +4, другого – от +4 до +6.
    Под действием слабого окислителя тиосульфат натрия окисляется до соли тетратионовой кислоты H 2 S 4 O 6 .
    Взаимодействие тиосульфата натрия с йодом:

    2 Na 2 S 2 O 3 + I 2 ↔ Na 2 S 4 O 6 + 2NaI

    Уравнения ионно-молекулярного баланса:

    Ионно-молекулярное уравнение:

    2S 2 O 3 2- + I 2 0 ↔ S 4 O 6 2- + 2I -

    Молекулярная форма:

    2Na 2 S 2 O 3 + I 2 ↔ Na 2 S 4 O 6 + 2NaI

    В данной реакции тиосульфат натрия выступает в роли восстановителя, увеличивая степень окисления одного атома серы от 0 до +4. При нагревании свыше 200 0С тиосульфат натрия распадается по схеме:

    4Na 2 S 2 O 3Na 2 SO 4 + Na 2 S + 4S↓

    При этом протекает реакция самоокисления-восстановления.

    Реакции серной кислоты

    Задача 867.
    Составить уравнения реакций: а) концентрированной Н 2 SO 4 с магнием и с серебром; б) разбавленной Н 2 SO 4 с железом.
    Решение:
    а) 4Mg + 5Н 2 SO 4 (конц.) → 4MgSO 4 + H 2 S) + 4H 2 O;
    б) 2Ag + 2Н 2 SO (конц.) → Ag 2 SO 4 + SO 2 + 2H 2 O;
    в) Fe + Н 2 SO 4 (разб.) → FeSO 4 + H 2 .

    Задача 868.
    Сколько граммов серной кислоты необходимо для растворения 50 г ртути? Сколько из них пойдет на окисление ртути? Можно ли для растворения ртути взять разбавленную серную кислоту?
    Решение:
    Уравнение реакции:

    Уравнения ионно-молекулярного баланса:

    Ионно-молекулярное уравнение:

    Hg + SO 4 2- + 4H + ↔ Hg 2+ + SO 2 + 2H 2 O

    Из уравнений окисления-восстановления следует, что на окисление 1 моль Hg затрачивается 1 моль H2SO4, следовательно,

    200,5: 98 = 50: х ; х = (98 . 50)/200,5 = 24,44 г.

    Находим массу H2SO4 из пропорции:

    200,5: (2 . 98) = 50: х ; х = (2 . 98 . 50)/200,5 = 48,88 г.

    Ответ: 48,88 г; 24,44 г. Ртуть стоит в ряду напряжений после водорода – поэтому разбавленная серная кислота не действует на ртуть. Следовательно, для растворения ртути нужно взять концентрированную серную кислоту.

    Задача 869.
    Одинаковое ли количество серной кислоты потребуется для растворения 40 г никеля, если в одном случае взять концентрированную кислоту, а в другом разбавленную? Какая масса серной кислоты пойдет на окисление никеля в каждом случае?
    Решение:
    Уравнения реакций:

    а) Ni + 2H 2 SO 4 (конц.) → NiSO4 + SO2 + 2H2O;
    б) Ni + H 2 SO 4 (разб.) → NiSO4 + Н2.

    Рассчитаем массу концентрированной серной кислоты идущую на окисление 40 г никеля из пропорции:

    58,7: (2 . 98) = 40: х ; х = (2 . 98 . 40)/58,7 = 133,56, г.

    Теперь рассчитаем массу разбавленной серной кислоты идущую на окисление 40 г никеля из пропорции:

    58,7: 98 = 40: х ; х = (98 . 40)/58,7 = 66,78 г.

    Ответ : 133,56 г; 66,78 г. На окисление никеля расходуется одинаковое количество серной кислоты.